
AVT-VIBE – OVERVIEW OF TWO MODELS FOR THE ICIP 2024 GRAND CHALLENGE
ON VIDEO COMPLEXITY

Steve Göring, Rakesh Rao Ramachandra Rao

Audiovisual Technology Group, Technische Universität Ilmenau, Germany;
Email: [steve.goering, rakesh-rao.ramachandra-rao]@tu-ilmenau.de

ABSTRACT

For the ICIP 2024 Grand Challenge on Video Complex-
ity we submitted two models, which after the evaluation
were ranked as second and third best models of overall
18 submissions. In the following brief overview, we de-
scribe the challenge and decisions which resulted in the
two models. Both models are kept simple, and only rely
on a recent ffmpeg installation and can be run with linux.
The implementation is publicly available1.

Index Terms— video complexity, grand challenge

1. INTRODUCTION

Spatial (within frame) and temporal (across frames) re-
dundancies are the key for efficient video compression.
Hence, it is important to estimate them for a video espe-
cially for encoding optimization in streaming scenarios.
One way of estimating such redundancies is by measur-
ing the complexity of the video. Traditionally, SI and
TI [1] have been used for this purpose. However, SI and
TI do not correlate well with the compressibility of the
video [2, 3]. Thus, there is a need to develop measures for
the complexity of the video to aid better compressibil-
ity. E.g., Satti et al. [3] propose a CRF-based complexity
measure which has been shown to be a better measure
of encoding complexity, or with DNNs and CRF in [4]

Another important factor in estimating video com-
plexity is the computation speed. All the aforementioned
approaches are not real time. VCA [5] tends to allevi-
ate this problem by providing a computationally efficient
approach to estimate the spatial and temporal complex-
ity of a video. However, it also does not correlate well
with the encoding complexity, e.g., estimating the bitrate
for a given CRF value. Hence, there is a need for com-
putationally efficient video complexity estimators that
correlate well with encoding complexity. In this paper
we propose two approaches to predict the accurate and
computationally efficient bitrate complexity of a given
video.

1https://github.com/Telecommunication-Telemedia-Assessment/
avt_vibe

2. PRE-ANALYSIS

We ran various experiments to select the ffmpeg [6] pa-
rameters. In the following we use the video 2.mp4 of
the Inter4K dataset [7] for demonstration. For each of
the subsequent experiments we ran 20 repetitions for the
time measurement. We varied the preset, the CRF pa-
rameter, and the amount of selected frames. All mea-
surements have been performed on a Lenovo Thinkpad
T14s with AMD Ryzen 7 PRO 6850U.

2.1. Preset Encoding Speed

H.264 offers 11 different presets (ultrafast to placebo2).
We only included ultrafast, superfast, veryfast, faster,
fast, medium, and slow to analyze the required process-
ing time.

5 10 15 20
average time [s]

ultrafast
superfast
veryfast

faster
fast

medium
slow

pr
es

et

preset variable; crf=26; 20 repetitions

Fig. 1. Preset parameter compared to processing time.

In Fig. 1 it can be seen that the medium preset takes
approximately 15 s while the superfast preset takes only
≈ 5 s and ultrafast takes ≈ 3 s . Thus we selected for
the AVT-VIBE-S superfast as the preset. For the model
AVT-VIBE-R we selected the ultrafast preset.

2.2. CRF Setting

H.264 can have CRF values from 0 to 512, in our analysis
we only selected even values in [20, 34] with a fixed preset
of medium. The competition aimed for the bitrate at a
CRF of 26, however CRF values around this value may
result in similar bitrates. In the first instance we checked
the processing time for varying CRF values.

2https://trac.ffmpeg.org/wiki/Encode/H.264

12 13 14 15 16 17 18
average time [s]

20
22
24
26
28
30
32
34

cr
f

medium preset; crf variable; 20 repetitions

Fig. 2. CRF vs. processing time.

Results are shown in Fig. 2, here the overall time
ranges from 12 to 17 seconds, while the target CRF of
26 is ≈ 15 s. For the CRF=28 the time is only slightly re-
duce to 14 s. For the AVT-VIBE-S , we selected CRF=28
also because it was minimally improving the performance
for the bitrate estimation. AVT-VIBE-R uses the target
CRF of 26.

2.3. Frame Sampling and other Parameters

We evaluated the speed gain for frame sampling (e.g.
every n-th frame for n ∈ {5, 10, 20, 30, 60}), here, n = 10
showed the best tradeoff between speed and accuracy.

Our first prototypes were built around Python, how-
ever, we skipped Python for the final submission and all
models just run with BASH due to time requirements.
Furthermore, we added the keyframe interval of 10 for
AVT-VIBE-S and tune parameter as zerolatency for
both models. AVT-VIBE-R used a curve fitting ap-
proach, while AVT-VIBE-S just outputs the bitrate.

3. PERFORMANCE EVALUATION

For the performance evaluation considering bitrate esti-
mation, we used two datasets, the first is the Inter4K
dataset [7] (1k videos), as it was required by the compe-
tition. Furthermore, we used the 2160p videos from the
YouTube UGC Dataset (YTUGC) [8] (125 videos; H.264
CRF=10 encoded). These videos were then trimmed to
the first 5 seconds and we estimated the target bitrates
with re-encoded using H.264 CRF=26 medium preset.

3.1. AVT-VIBE-S and AVT-VIBE-R

The final command of AVT-VIBE-S is shown in Listing 1
and AVT-VIBE-R in Listing 2 respectively.

1 #!/bin/bash
if [[”$1” == ””]] ; then

3 echo ”usage: ./est_sf_crf.sh <video>”
exit 0

5 fi
res=$(ffmpeg −y −i ”$1” −filter :v ”select=’not(mod(n\,10)) ’ ,setpts=N/FRAME_RATE/

↪→ TB” −c:v libx264 −x264opts keyint=10:min−keyint=10:scenecut=−1−crf 28
↪→ −preset superfast −tune zerolatency −f mp4 /dev/null 2>&1 | grep ”
↪→ libx264”)

7
bitrate=$(echo ”$res” | grep ”kb/s” | sed ”s|.∗kb.s :||g”)

9
echo ”{\”video\”: \”$1\”, \”estimated_bitrate_[kb/s]\”: $bitrate }”

Listing 1. AVT-VIBE-S

#!/bin/bash
2 # requires ffmpeg and bc installed

if [[”$1” == ””]] ; then
4 echo ”usage: ./est_uf_qp_sr_crf.sh <video>”

exit 0
6 fi

res=$(ffmpeg −y −i ”$1” −filter :v ”select=’not(mod(n\,10)) ’ ,setpts=N/FRAME_RATE/
↪→ TB” −c:v libx264 −crf 26 −preset ultrafast −tune zerolatency −f mp4 /
↪→ dev/null 2>&1 | grep ”libx264”)

8
bitrate=$(echo ”$res” | grep ”kb/s” | sed ”s|.∗kb.s :||g”)

10 skipratio=$(echo ”$res” | grep ”skip:” | sed ”s|.∗:||g” | sed ”s|%||g”)
pframe_qp=$(echo ”$res” | grep ”frame P:” | sed ”s|.∗Avg QP:||g” | sed ”s|size :.∗

↪→ ||g” | sed ”s| ∗||g”)
12

a1=21749.2761
14 b1=0.13837051

c1=30121.3953
16 d11=−31616.5783

e1=80835.9569
18

bitrate=$(echo ”scale=0;$a1 + $b1∗$bitrate + $c1 ∗ l($pframe_qp / 51) + $d11∗e(−
↪→ e1∗ $skipratio/ 100)” | bc −l)

20
echo ”{\”video\”: \”$1\”, \”estimated_bitrate_[kb/s]\”: $bitrate }”

Listing 2. AVT-VIBE-R

3.2. Performance

Table 1. Performance values for both models considering
Inter4K and YT-UGC datasets.

Dataset Pearson Kendall Spearman Model

Inter4K 0.783 0.623 0.812 AVT-VIBE-R
Inter4K 0.848 0.715 0.886 AVT-VIBE-S
YTUGC 0.838 0.707 0.876 AVT-VIBE-R
YTUGC 0.869 0.732 0.901 AVT-VIBE-S

In Table 1 the performance values for both models are
summarized, indicating that both models have a similar
high correlation. Within the competition the evaluation
focused on speed and Pearson Correlation. AVT-VIBE-S
takes ≈ 1.8 s for 2.mp4 and AVT-VIBE-R takes ≈ 1.6 s
in contrast to the full encoding time of ≈ 15 s.

4. CONCLUSION AND FUTURE WORK

As part of the “Grand Challenge on Video Complex-
ity” we developed and submitted two models to estimate
bitrate complexity. In this paper, in addition to the
algorithms of the submitted models, we also present a
detailed analysis of how the different encoding param-
eters were chosen. Furthermore, the developed models
were evaluated on a separate validation dataset created
using videos from the YT-UGC dataset prior to submit-
ting these models to the competition. This evaluation
showed that the models performed well both in terms of
accuracy measured using Pearson Correlation and com-
putation speed. As future work, these models will be
extended to be applicable to other codecs such as H.265,
AV1, etc.

5. REFERENCES

[1] ITU-T Rec. P.910, “Subjective video quality assess-
ment methods for multimedia applications,” 1999.

[2] Werner Robitza, Rakesh Rao Ramachandra Rao,
Steve Göring, and Alexander Raake, “Impact of spa-
tial and temporal information on video quality and
compressibility,” in 13th International Conference on
Quality of Multimedia Experience (QoMEX), 2021.

[3] Shahid Mahmood Satti, Matthias Obermann, Chris-
tian Schmidmer, and Michael Keyhl, “Video encod-
ing complexity characterization,” in 14th Interna-
tional Conference on Quality of Multimedia Experi-
ence, QoMEX 2022, Lippstadt, Germany, September
5-7, 2022. 2022, pp. 1–4, IEEE.

[4] Francisco Micó-Enguídanos, Wilmer Moina-Rivera,
Juan Gutiérrez-Aguado, and Miguel Garcia-Pineda,
“Per-title and per-segment crf estimation using dnns
for quality-based video coding,” Expert Systems with
Applications, vol. 227, pp. 120289, 2023.

[5] Vignesh V Menon, Christian Feldmann, Hadi Amir-
pour, Mohammad Ghanbari, and Christian Tim-
merer, “Vca: video complexity analyzer,” in Pro-
ceedings of the 13th ACM Multimedia Systems Con-
ference, New York, NY, USA, 2022, MMSys ’22, p.
259–264, Association for Computing Machinery.

[6] Suramya Tomar, “Converting video formats with
ffmpeg,” Linux Journal, vol. 2006, no. 146, pp. 10,
2006.

[7] Alexandros Stergiou and Ronald Poppe, “Adapool:
Exponential adaptive pooling for information-
retaining downsampling,” arXiv preprint, 2021.

[8] Yilin Wang, Sasi Inguva, and Balu Adsumilli,
“Youtube ugc dataset for video compression re-
search,” in 2019 IEEE 21st International Workshop
on Multimedia Signal Processing (MMSP). IEEE,
2019, pp. 1–5.

