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Motivation

▶ AI-based image enhancement methods ...
◦ e.g, for de-noising [14], in-painting [18], or

re-colorization [20]
◦ also for up-scaling [23, 3, 2, 24]

▶ typical comparison in state-of-the-art
◦ objective models: PSNR/SSIM,
◦ only one AI up-scaling method,
◦ less often subjective evaluation

▶ our focus
◦ which of the models is visually the best?
◦ can the used method be detected after processing?
◦ can the visual appeal predicted for up-scaling?
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Upscaling Example

AI-based up-scaling examples; left: full image, then 270x270 pixels center crops of the
source image, BSRGAN x4 [24], and KXNet x4 [3].
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Dataset

▶ image up-scaling methods
◦ BSRGAN [24], KXNet [3], Real-ESRGAN [23],

waifu2x [16], Lanczos
◦ two up-scaling factors (x2, x4)

▶ high resolution (1080p) real content
◦ 136 source images

▷ from “own” subset of AVT-ImageAppeal-Dataset [6]
▷ re-scaling to 1080p height as reference x1;
▷ for x2 down-scaling to 540p; for x4 to 270p

▶ total 136 × ( 2︸︷︷︸
x2,x4

× 5︸︷︷︸
methods

+ 1︸︷︷︸
x1

) = 1496
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Evaluation - general

▶ online crowd-sourcing test
◦ for image appeal
◦ based on AVRate Voyager [10]
◦ a participant rates 400 of 1496 images

▶ 55 participants (Clickworkers)
◦ images have been rated

▷ at least by 4,
▷ at most by 25,
▷ on average by 14.7 participants

▶ obvious: x1 > x2 > x4
▶ SOS analysis [12] → a ≈ 0.275
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Evaluation - up-scaling algorithms

▶ best: Real-ESRGAN,
BSRGAN

▶ worst: Lanczos, KXNet
▶ waifu2x in between
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Up-scaled preferred over source image

Preference example; left: full source image; then 270x270 pixels center crops of the source
image, Real-ESRGAN x2, and Real-ESRGAN x4.

▶ example source image: mean appeal rating of ≈ 3.78
▶ x2 Real-ESRGAN variant: ≈ 4.0
▶ x4 Real-ESRGAN: ≈ 3.17
▶ overall: upscaled > source image: x4: 40%; x2: 74%

6 / 19



Detection
▶ which up-scaling method has been used?

◦ multi-class classification, similar to [7, 5]
◦ pre-trained baseline DNN,
◦ transfer-learning [22], Keras [1]
◦ images split into patches (224x224; no overlap)
◦ 16 baseline models; 90%-10% train-validation

▶ best models:
◦ DenseNet (f1-score ≈ 0.74) or ResNet variants

▶ worst: Inception or VGG variants
▶ Real-ESRGAN ∼ BSRGAN
▶ maybe better to predict: underlying

generic method
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0.6 0.016 0.33 0 0.039 0.011

0.0041 0.76 0.0055 0.095 0.072 0.061

0.15 0.0067 0.78 0.0067 0.032 0.019

0.0012 0.16 0.0025 0.81 0.017 0.0087

0.089 0.098 0.074 0.053 0.65 0.039

0.0027 0.11 0.036 0.029 0.03 0.79

confusion matrix: DenseNet121, normalized, acc:0.742
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Appeal prediction

▶ similar to detection
◦ 16 DNNs, transfer-learning
◦ regression instead of classification
◦ mean appeal scores normalized to [0, 1]
◦ center cropped inputs (224x224) [8, 4]

▶ DNN models
◦ best: ResNet152V2, 0.83 PCC
◦ worst: MobileNetV2, InceptionV3
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Image appeal compared to signal features
Feature Pearson Kendall Spearman

*combined* 0.669 0.450 0.631

cpbd [17] 0.572 0.363 0.522
fft [11] 0.331 0.238 0.350
noise [11] 0.299 0.302 0.447
si 0.213 0.135 0.200
blur 0.152 0.110 0.164
saturation 0.093 0.057 0.087
colorfulness 0.024 0.019 0.028
contrast -0.013 -0.005 -0.008
tone -0.039 -0.020 -0.031
niqe -0.088 -0.040 -0.061
blur strength -0.378 -0.257 -0.375

implementation: [9]; *combined*=RF model, 100 trees, scikit-learn [19]
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Image appeal compared to SoA Models

Model Pearson Kendall Spearman

DBCNN [25] 0.605 0.436 0.618
HYPERIQA [21] 0.601 0.414 0.592
CNNIQA 0.592 0.376 0.536
MUSIQ 0.555 0.365 0.522
MANIQA 0.505 0.345 0.493
paq2piq 0.492 0.311 0.448
NIMA quality CC [15] 0.433 0.281 0.408

ms_ssim 0.368 0.232 0.348
vif 0.363 0.248 0.373
psnr 0.248 0.164 0.244
ssim 0.183 0.135 0.203

implementation: PyTorch Image Quality (PIQ) Toolbox [13]
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Conclusion, Summary and Future Work
▶ observation

◦ DNN/AI-based up-scaling maybe better than traditional approaches

▶ open source dataset, subjective annotation, evaluation & comparison
◦ 5 up-scaling methods, 2 factors, 1496 rated images
◦ most appealing model Real-ESRGAN, second BSRGAN, Lanczos bad
◦ reverse detection of which method used: possible
◦ appeal prediction: new models needed, transfer learning promising

▶ future work
◦ more tests with a larger number of source images/more methods
◦ update/improve existing models to include AI distortions
◦ video up-scaling with newer ai-based up-scaling methods
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Thank you for your attention

. . . . . . are there any questions?
The authors would like to thank the participants for taking part in this crowd
test. Furthermore, we want to thank the “AG Wissenschaftliches
Rechnen” of the TU Ilmenau for providing computing resources.
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