Appeal and quality assessment for Al-generated images

Steve Göring, Rakesh Rao Ramachandra Rao, Rasmus Merten, Alexander Raake

Audiovisual Technology Group; Technische Universität Ilmenau, Germany Email: [steve.goering, rakesh-rao.ramachandra-rao, rasmus-leo-lukas.merten, alexander.raake]@tu-ilmenau.de

Code & Data: http://git.avt-imt.de/avt_ai_images

Introduction

- ▶ increase of Al-generated images, e.g.:
 - DALL-E-2, Midjourney, Stable Diffusion [7], or Craiyon [1]
- \blacktriangleright text prompt \rightarrow generated image (=text to image (T2I))
- ▶ example images, see Fig. 1
 - text prompt "Hyper-realistic photo of an abandoned industrial site during a storm" (p16)
- uncommon artificial-looking distortions, varying appeal visual quality
- published AVT-AI-Image-Dataset [3]: • appeal, realism, text prompt matching \circ 5 T2l generators

- related work: usually no comparison of several generators
- open: image quality and appeal

Overview of the AVT-AI-Image-Dataset

- ► AVT-AI-Image-Dataset: 27 text prompts, 16 from Drawbench [8]
- ▶ 11 real images included (p17 to p27); all images: resolution 512x512
- ▶ 146 images, full overview in [3], prompt selection see:

ID Prompt	Origin
p11 A mechanical or electrical device for measuring time	Drawbench
p16 Hyper-realistic photo of an abandoned industrial site during a storm	Drawbench
p20 Purple flowers with yellow and a small bug	own
p23 A portrait of a mule	own
p27 A box with tools for home office	own

Subjective Test Design and Evaluation

- ▶ similar to [4, 6, 3]; AVRate Voyager [2] with two 1-5 sliders

Figure 1: Generated images for p16: DALL-E-2 (left), Midjourney (right).

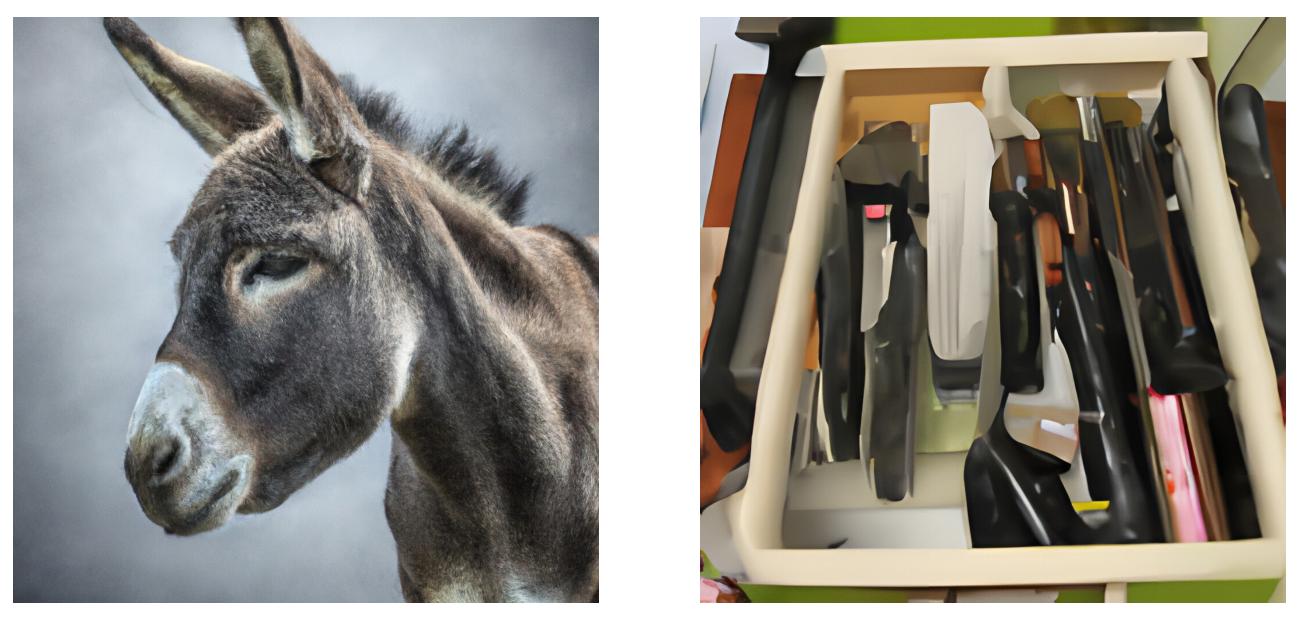


Figure 2: Best quality (left): DALL-E-2, p23 and worst (right): Glide, p27.

Evaluation of Image Quality

- ▶ SOS-analysis [5]; *a* value ≈ 0.306
- ▶ Midjourney, DALL-E-2 best, see Fig. 4
- ▶ 25 participants (12 from clickworker.com, remaining from university)
- \blacktriangleright no training phase, \approx 30 mins; partial runs excluded in results

Evaluation of Image Appeal

- ► SOS-analysis [5]; *a* value ≈ 0.33
- \blacktriangleright cross-test comparison: Pearson \approx 0.91, Kendall \approx 0.75, Spearman \approx 0.9
- ▶ highest: Midjourney p16; lowest: Glide p11; compare Fig. 3

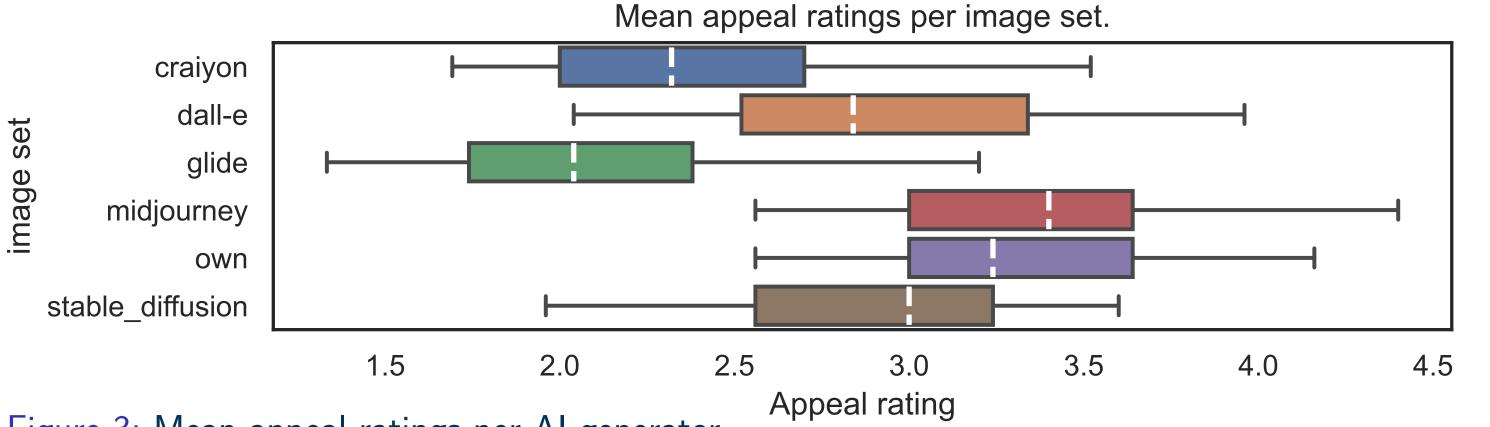
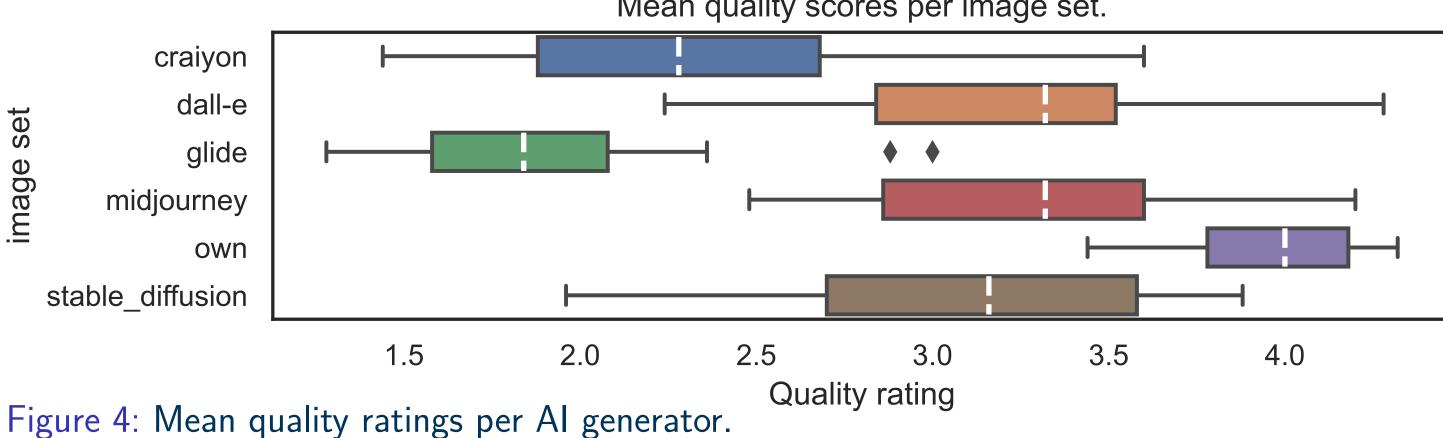



Figure 3: Mean appeal ratings per AI generator.

Conclusion

- Imited subjective evaluation for AI-generated images for different generators
- evaluation: AVT-AI-Image-Dataset appeal/ quality; crowdsourcing
- ► Glide and Craiyon: overall low appeal and quality

- ▶ best: "own" p20, DALL-E-2 p23; worst: Glide p27; see Fig. 2
- ▶ image quality models: best: MANIQA (0.44 PCC), BRISQUE (-0.39 PCC)
- ► appeal vs. quality:
 - \circ overall: 0.80 PCC, higher appeal \leftrightarrow higher quality
 - glide: 0.57 PCC; "own": 0.58 PCC
 - stable_diffusion: 0.62 PCC; dall-e: 0.63 PCC
 - midjourney: 0.74 PCC; craiyon: 0.77 PCC

Mean quality scores per image set.

- **Future Work**
- objective quality models: low performance for Al-generated images
- prediction models and features for Al-generated images
- ► larger datasets

► DALL-E-2 and Midjourney: similar high appeal/ quality to real photos

References

[1] B. Dayma et al. *DALL · E Mini*. July 2021.

[2] S. Göring, R. Rao Ramachandra Rao, S. Fremerey, and A. Raake. "AVRate Voyager: an open source online testing platform". In: 23st International Workshop on Multimedia Signal Processing (MMSP). IEEE. 2021, pp. 1–6. [3] S. Göring, R. Rao Ramachandra Rao, R. Merten, and A. Raake. "Analysis of Appeal for realistic Al-generated

Photos". In: vol. 11. IEEE, 2023, pp. 38999–39012.

- [4] S. Göring, R. Rao Ramachandra Rao, and A. Raake. "Quality Assessment of Higher Resolution Images and Videos with Remote Testing". In: Quality and User Experience (QUEX) 8 (2023).
- [5] T. Hoßfeld, R. Schatz, and S. Egger. "SOS: The MOS is not enough!" In: 3rd int. workshop on quality of multimedia experience. IEEE. 2011, pp. 131–136.
- [6] R. Rao Ramachandra Rao, S. Göring, and A. Raake. "Towards High Resolution Video Quality Assessment in the Crowd". In: 13th Int. Conf. on Quality of Multimedia Experience (QoMEX). 2021.
- [7] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. *High-Resolution Image Synthesis with Latent* Diffusion Models. 2021. arXiv: 2112.10752 [cs.CV].
- [8] C. Saharia et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding". In: arXiv preprint arXiv:2205.11487 (2022).

► newer Al generators

Acknowledgment

The authors would like to thank the participants for taking part in this crowd test. This work is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – DFG-437543412. Furthermore, we want to thank the "AG Wissenschaftliches Rechnen" of the TU Ilmenau for computing resources.

Funded by Deutsche Forschungsgemeinschaft German Research Foundation