
Rule of Thirds and Simplicity for Image Aesthetics using Deep
Neural Networks

Steve Göring and Alexander Raake

Audiovisual Technology Group,
Technische Universität Ilmenau, Germany;

Email: [steve.goering, alexander.raake]@tu-ilmenau.de

Code: https://bit.ly/2Yy18mw
MMSP 2021

September 10, 2021

https://bit.ly/2Yy18mw


Motivation

I increasing upload of photos to social media platforms
I such photos not necessarily all of high appeal
I photo rules to increase appeal, e.g. rule of thirds, simplicity, balancing

elements, and more [7]
I prediction whether a photo follows: rules of third, or image simplicity
→ How to automatically predict usage of photo rules?
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Our Approach
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I re-training/fine-tuning of pre-trained DNNs (17 different baseline models)

I for each rule: one model for a binary classification
I alternative:
◦ rule prediction: [12, 11, 1]

◦ prediction of overall appeal score: [4, 15, 3, 13, 10, 9, 2, 14, 8];

◦ overall score: still challenging [16, 6]
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Evaluation- rule of thirds

I dataset: Flickr urls [12]; 1808 "negative"; 1838 "positive"

I 90%-10% training validation split; 200 epochs, best reported

model accuracy precision recall f1 mcc

ResNet152 0.841 0.835 0.862 0.848 0.681

MobileNet 0.827 0.821 0.851 0.836 0.654
ResNet50 0.827 0.824 0.846 0.835 0.653

Table: rule of thirds prediction for top-3 DNN baseline models.

I better performance than Mai et al. [12] (80% accuracy)
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Evaluation- image simplicity

I dataset: urls [11]; 1832 “true"; 1980 “false".

I 90%-10% training validation split; 200 epochs, best reported

model accuracy precision recall f1 mcc

DenseNet121 0.940 0.952 0.927 0.939 0.880

ResNet50 0.934 0.941 0.927 0.934 0.869
VGG19 0.934 0.941 0.927 0.934 0.869

Table: image simplicity prediction for top-3 DNNs.

I better performance than Mai et al. [11] (89% accuracy)
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Evaluation- confusion matrix
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Rule Of Thirds: ResNet152 (best)

(a) Rule of thirds (ResNet152).
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Image Simplicity: DenseNet121 (best)

(b) Simplicity (DenseNet121).

Figure: Confusion matrices for best performing models considering both rules of thumbs.
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Evaluation- AVT-Image-Database

I 1133 images [5]; extended by 5 annotators for rule of thirds and simplicity

rule model accuracy precision recall f1 mcc

rule of thirds ResNet152 0.672 0.549 0.292 0.381 0.202
image simplicity DenseNet121 0.794 0.708 0.721 0.714 0.553

Table: performance of prediction in comparison to binary mean annotations.

I both prediction results within range of pairwise comparison of annotators
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Conclusion, Summary and Future Work

I overview of re-trained DNN models for photo rule prediction

◦ example rules: rule of thirds, image simplicity

◦ DNNs show good results; better than SoA reported values

I additional annotation of AVT-Image-Database

I open and next steps:

◦ apply models to other rules

◦ handle rules as regression

◦ analyze subjective influence for rule annotations
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Thank you for your attention
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