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Motivation
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I video providers: several advanced encoding strategies

I quality difference between two and one pass encoded videos

I important for quality models

I general idea: reverse engineer encoding settings based on bitstream data

→ prenc = prediction of number of encoding passes
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Related work

I bitstream based quality models:

◦ ITU-T’s P.1203: Raake et al., Robitza et al., ITU-T [4, 6, 1]

◦ Mode 3 model of P.1204: ITU-T [2]

◦ SVR based: Shahid, Rossholm, and Lövström [7]

I from pixels to bitstream:

◦ QP prediction h.264:Tagliasacchi and Tubaro [8]

◦ GOP period estimation: Ramakrishna, Mazumdar, and Bora [5]

◦ source video resolution: Katsavounidis, Aaron, and Ronca [3]
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Our Approach– prenc
 video segment

feature extraction
ffprobe

statistical
feature pooling

feature selection +
classification

1 pass or 
2 pass 

1 pass or 2
pass

for training

prediction

I 56 features based on ffprobe, codec

I framesizes: meanall , stdall , qi
all , meanI,P,B, stdI,P,B, qi

I,P,B; ∀i ∈ [0, 10]

I frametypes: rI , rP , rB

I several ML algorithms applicable, e.g. RF, SVM
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Evaluation – Dataset

I 10 / 16 src videos own; all ≥ 3 minutes video duration

I represent several short video genres

I uncompressed, 4:2:2 chroma sub-sampling, most 10 bit
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Evaluation –Encoding
Resolution Bitrates [Mbit/s]

360p [0.25, 0.5, 1.0]
480p [0.3, 0.6, 1.2]
720p [0.5, 1.0, 2.0]
1080p [2.0, 4.0, 8.0]
1440p [3.0, 6.0, 12.0]
2160p [4.0, 8.0, 16.0]

I 1-pass and 2-pass fixed bitrate encoding (50% each)
I several bitrate and resolutions; h.264 and h.265
I 72 different encoding settings for a given video
I encoding performed using FFmpeg 4.1.3
I DASH segmentation after encoding (4 s segment length) → 131.976

segments
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Evaluation – Prediction
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I 10-fold evaluation (10 repetitions each)

I with several algorithms: RF, SVC, GBC, KNN

I feature selection: FS(0), FS(0.5), FS(1.0)

I best: RF model with FS(0) and 150 trees
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Evaluation – Prediction

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

RF@150 FS(0)

GBC@50 FS(1)

SVC FS(1)

RF@50 FS(0)

performance values for 50-50 split evaluation
metric
f1
precision
recall
accuracy

I 50% - 50% split with source video overlapp (10 repetitions each)

I RF: FS(0), 50/150 trees; SVC: FS(1); GBC: FS(1), 50 trees

I best: SVC
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Conclusion, Summary and Future Work

I overview of prenc
◦ prediction of the number of encoding passes

◦ large scale dataset and evaluation

I mode 1 features
◦ seem to be feasible, results can be improved

◦ RF and SVC based models best

I open and next steps:
◦ evaluate to predict other encoding settings

◦ include higher features (mode 3)
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Thank you for your attention

. . . . . . are there any questions?
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