nofu — A Lightweight No-Reference Pixel Based
Video Quality Model for Gaming Content

Steve Goring, Rakesh Rao Ramachandra Rao, Alexander Raake
Audiovisual Technology Group; Technische Universitt [lmenau, Germany
Email: [steve.goering, rakesh-rao.ramachandra-rao, alexander.raake] @tu-ilmenau.de

Abstract—Popularity of streaming services for gaming videos
has increased tremendously over the last years, e.g. Twitch
and Youtube Gaming. Compared to classical video streaming
applications, gaming videos have additional requirements. For
example, it is important that videos are streamed live with only
a small delay. In addition, users expect low stalling, waiting
time and in general high video quality during streaming, e.g.
using http-based adaptive streaming. These requirements lead to
different challenges for quality prediction in case of streamed
gaming videos. We describe newly developed features and a no-
reference video quality machine learning model, that uses only
the recorded video to predict video quality scores. In different
evaluation experiments we compare our proposed model nofu
with state-of-the-art reduced or full reference models and metrics.
In addition, we trained a no-reference baseline model using
brisque+niqe features. We show that our model has a similar
or better performance than other models. Furthermore, nofu
outperforms VMAF for subjective gaming QoE prediction, even
though nofu does not require any reference video.

I. INTRODUCTION

Besides classical video streaming applications like Netflix,
YouTube, Amazon Prime Video, etc., there is also a com-
munity that streams gaming videos over the internet. Famous
platforms to watch such streams of gaming videos are Twitch!
and YouTube Gaming?. On both platforms two different types
of streams can be distinguished — live and non-live transmis-
sions. For live encoding different codec presets are applied in
comparison to a non-live transmitted video encoding. Not all
codecs are suitable for such a scenario, due to the requirement
that encoding needs to be done in real time [5]. Most suitable
codecs for live video encoding are H.264 and H.265, e.g., in
combination with hardware encoding acceleration with a fast
or ultrafast preset and a 1-pass encoding scheme. Our focus in
this paper is the live scenario, because the non-live scenario
is more similar to general video streaming platforms, where
an advanced encoding process can be applied. Subjective
evaluation methods for gaming QoE are currently developed
and discussed [20, 19]. In general, similar to the classical video
streaming case, there are several influencing factors for gaming
QoE, e.g., human, system, context and more [20]. Beside clas-
sical video streaming factors such as content characteristics
that influence encoding or the resulting quality, there exist
factors specific for video streams of gaming sessions. One
reason for this is that games have mostly similar content, sim-
ilar patterns, specific camera movements, artificially generated
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textures and more [33]. Objective video quality metrics for
gaming QoE have already successfully been analyzed [5, 2,
3]. For example, VMAF [22] shows good correlation with
subjective ratings. However, full-reference models cannot be
used in practice in live streaming applications, because mostly
the calculation is slow and requires a high-quality reference
version of the video, that is not available in typical game-
play recordings. For gaming videos, during a game session a
player records or streams an encoded version of the video to
external servers, and an uncompressed version of the video
is not stored. Hence, no-reference metrics are more applicable
for the gaming scenario. As shown in [3], they show promising
results for gaming QoE, e.g., nige [17] or brisque [18]. Also
Zadtootaghaj et al. [34] analyzes different no-reference metrics
for gaming content with promising results. We propose a
method to build a no-reference (NR) video quality metric that
uses state-of-the-art and newly developed features to predict
video quality on a short-segment basis, e.g. 2-10 seconds, that
are typically used in dynamic adaptive streaming [23]. We
train a machine learning model, in our case a random forest
model with feature selection, to predict per-segment subjective
scores. An aggregation of the complete video session quality
using several video segments scores can be done with other
state-of-the-art temporal aggregation methods [27, 8], such as
the integration module of ITU-T P.1203 [28, 11]. A more
detailed long term quality analysis for gaming QoE is required,
where also audio quality and delay could be included. Also the
lack of availability of public long-term gaming QoE databases
hinders the development of such models. In our evaluation
experiments we use the GamingVideoSET [4]. We train and
evaluate our model on the VMAF scores included for all
videos and using the subjective scores. Our proposed model —
nofu — outperforms VMAF in predicting accuracy. In addition,
we train a model using brisque+nige features as baseline NR
model, which nofu also outperforms.

The paper is organized as follows. In Section II, a brief
overview of NR video quality models is provided. We discuss
models for gaming QoE prediction and outline the differences
to our proposed model. Further, in Section III, we describe our
model and features in detail. To verify and evaluate our model
and features we conducted several experiments, as described
in Section IV. Finally, we conclude with a discussion of the
model, a short outlook on future ideas and work in Section V.



II. RELATED WORK

In general, video quality models can be categorized into
three classes: no-reference (NR), reduced-reference (RR) and
full-reference (FR) [30]. Furthermore, NR models can be sub-
categorized into pixel based, bitstream based and hybrid (using
pixel and bitstream data).

In this paper, we will focus only on pixel-based models.
There are open-source implementations available also for
bitstream-based model®, however such models like ITU-T
P.1203 [28, 11] are trained for classical video streaming
applications with completely different encoding settings, and
hence are not directly applicable to gaming QoE.

Specifically for gaming QoE, a few modern video qual-
ity models were already analyzed in [5, 2, 3]. Barman
et al. [3] analyzed FR algorithms: Peak Signal to Noise
Ratio (PSNR), Structural Similarity Index Metric [32] (SSIM)
and VMAF [22, 14]. In addition, they analyzed the RR
methods STRRED [31] and SpeedQA [1].

In addition, NR models were analyzed [3], e.g., brisque [18],
nige [17] and bigi [21]. The best performing model for
the GamingVideoSET [4] was VMAF [3], with a Pearson
correlation (PCC) of around 0.9 compared to subjective scores.
The performance of all analyzed NR and RR approaches was
lower than 0.7 PCC. Especially for classical video quality,
other NR models are available that have a similar performance
to FR models such as VMAF. Further, Zadtootaghaj et al. [34]
developed a NR metric NR-GVQM, where the used feature
sets are analyzed, this metric shows promising results, e.g.
a PCC of 0.89. Goring et al. [10] trained two no-reference
models for classical video quality up to 4K resolution. The
first one is a brisque+nige baseline model trained on per-
frame VMAF scores. It shows a good PCC (= 0.85) with
VMAF and subjective scores. This model is similar to the
one that we use as baseline model. However, instead of per-
frame scores, we use a temporal pooling step before training
a machine learning algorithm, see Section III-C. The second
metric, called deviq [10], uses a pre-trained classification deep
neural network (DNN) to extract several features for each
frame using a sub-image approach. The extracted features
are used to predict per-frame VMAF scores. Similar to the
used brisque+nige model, deviq shows good performance for
VMATF and subjective score prediction with a PCC of ~ 0.84.
In case of gaming QoE prediction, a classification DNN as
used as component in deviq [10] or Venice [7] is not suitable
for several reasons. First, it is trained mostly on natural
content, e.g. flowers, sunsets, and more, in contrast to the
artificial content that is used in games. Even if a retraining or
transfer learning of the used classification network is applied,
most layers of the DNNs will correspond to natural content.
Second, the used sub-image approach and prediction requires
a lot of processing time, not available in the context of live
monitoring or fast predictions.

To sum up, current state-of-the-art video quality models are
not completely suitable for gaming QoE prediction, especially
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if live monitoring or fast calculations are required. Best
performing approaches are FR models. However, there is no
actual reference video available in gaming video streaming,
because recording is usually done with a lossy setup.

III. OUR NO-REFERENCE APPROACH

To tackle the problem of a fast prediction without reference
video, we developed a no-reference video quality model —
nofu, that we will describe and motivate in the following
Section.

In this paper we focus on features that are fast to calculate.
Furthermore, we try to use as few features as possible, to
be able to have a model that can deliver live predictions.
Another method to reduce the processing time is that we use
a 360p center crop of the rescaled video sequence. In case
of a rescaled input resolution of 1920x1080, a center crop of
640x360 pixels is used. All feature values are calculated based
on this center part of the image.

A. General Video Quality Features

We use some state-of-the-art features that have successfully
been applied to video quality classification/prediction [13, 16,
9]. First, we use the spatial information measure SI based
on ITU-T Recommendation P.910 [12]. We use our python
implementation of this feature*. Spatial information is the
standard derivation of the frame after applying a sobel filter.

Furthermore, blurriness is an additional important influenc-
ing factor, because of downscaling and subsequent upscaling
of the video. To measure blurriness we use an own imple-
mentation of a fft feature, based on [13]. This feature applies
FFT on a given image, and counts high-frequency parts in the
transformed image.

Motion is another quality aspect, especially for gaming
videos, using fast encoding presets. As a first motion feature
we use the temporal perceptual information 77T based on ITU-
T Recommendation P.910 [12]°. 7T is the standard deviation
of differences at fixed pixel positions between two consecutive
frames.

B. New Features for Gaming Videos

We observed a number of differences between classical
video streams and gaming videos. For example, most video
games consist of more or less static or constant game elements,
e.g. to provide information to the player. To measure the
staticness of a video we introduce a feature called staticness.

For a frame f in the video, we calculate the sum of
all previous frames and normalize the resulting frame by
the number of already shown frames. The summed frame
s calculated this way can be seen as a mean value of all
previously shown frames. As next step, we calculate the SI
value of the summed frame s and use it as our feature. This
feature is based on the assumption that the SI measure reflects
the remaining image information in the summed frame s. E.g.
in case of a completely static image our summed frame s has a
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lot of spatial information. Whereas in case of a video without
static content, where s will be mostly blurred, ST will be low.

Furthermore, due to the fast encoding preset, the video
encoder needs to predict movements and compresses I-Frames
faster. We observed that such fast encoding introduces a lot
of block artifacts. There exist some blockiness measurements,
e.g. for images [25, 26]. However, these features were de-
veloped for JPEG compression with a fixed block size, and
all tested implementations were quite slow. For this reason,
we implemented our own blockiness measure that uses some
ideas of the papers [25, 26]. For a given frame f of a video,
we apply a canny edge detector [6] and get the edges as
e, where e is a two-dimensional array with n rows and m
columns. Here, e, j] refers to the ith row in the jth column.
As a next step, for each column j we calculate a value
cslj] = L3 eli,j]Vi, and for each row i respectively the
value rs[i] = L " e[i, j]Vj. The estimated values cs and rs
are column and row summations normalized by the number
of rows/columns. Then, for a given blocksize b we estimate
for each shift s € [0..b] the mean value of a subset of cs/rs.
For example, for a shift s we select every bth value in cs/rs
starting from s. For such a selection we calculate the mean
value. As a result, we obtain mean values for all possible
shifts, and we assume that a maximum value of the shifts
indicates where possible block artifacts can be found. We
measure the difference of this mean value to the selected
values in cs/rs. Using this approach we get values mD,,
S. (where mD, is the mean difference value for blocksize
b using a shift of s.) and mD,, s,. Finally, for a given
blocksize we calculate the following value as further measure
VImD, —mD,|/2lse=sr1/0,

This measure has a larger value if there are block artefacts
in the frame. Usually blocks have a square shape, resulting
in a measurable difference mD,. — mD, in both directions
x and y. We further normalize the estimated value based on
the assumed blocksize and shifts. We repeat the calculation
for commonly used blocksizes b € [8,16,32,64,128], and
the final measure blockiness is the maximum of all estimated
values. Our implemented feature is faster compared to other
state-of-the-art methods, however it relies on a fixed block
alignment, which is not always the case in videos. We checked
the feature with different real world videos, consisting of block
artifacts and found out that it represents a good approximation.

Gaming videos are also different in their type of motion.
For example, in a strategy game a player can move around
the complete area of the game world. To measure motion as a
video feature, we started with ideas from Men et al. [16]. Men
et al. [16] calculate temporal features based on cuboid slices
of the video. Considering that e.g. for full-hd or 4K videos
such a feature would require to store all frames to access the
cuboid view, we decided to extend and simplify the ideas. First
of all, we only consider the first and last rows, referred to as
cubrow-first, cubrow-last, and first and last columns, cubcol-
first, cubcol-last as model features. Considering that we use a
360p center crop, the used columns and rows are representing
a middle cuboid view of a video. Furthermore, for a given

sliding window with w = 60 frames we collect all column/row
values. For each window w we calculate spatial information
of the column/row view of the video over time as final
measure for the window. This idea follows the observation
that e.g. in case of a static content, all video rows/columns
are static, and the cuboid would lead to horizontal lines
in case of the temporal view. Those horizontal lines have
less spatial information, compared to a more chaotic motion,
where the calculated SI value would be larger. In experiments
during development we also selected more rows and columns,
however we found two rows and columns to be sufficient to
efficiently measure motion.

We further observed that blockmotion artifacts are observed
more often in gaming videos. We use a simple blockmotion
measure blockmotion. Our feature is based on the block-
motion estimation implementation of scikit-video ¢ with the
SE3SS [15] method. We use 10% of the video height — in our
case of the 360p center crop — as blocksize for blockmotion
estimation. After extraction of the moved blocks, we count
how often a block is moved left, right, top, down, or not.
For each block value we get horizontal and vertical motion
in the range [-1,0,1]. We ignore the differentiation between
horizontal and vertical and just count how often [-1,0,1] are
occurring in our estimation. As feature value we use the
normalized -1, 0, 1 counts.

TABLE I
FEATURES THAT ARE USED FOR PREDICTION WITH SOURCES, img ARE
IMAGE FEATURES, mov ARE MOTION-BASED FEATURES

feature name imglmov source  # values
fft img [13] 1
ti mov [12] 1
si img [12] 1
blockiness img own 1
blockmotion mov own 3
staticness mov own 1
cubrow-first mov own 1
cubrow-last mov own 1
cubcol-first mov own 1
cubcol-last mov own 1
additional

nige img [17] 1
brisque img [18] 36

In Table I all features are summarized. In total, we use
10 base features that in sum calculate 12 values per frame.
We also added two further features in the table nige [17] and
brisque [18]. We will use brisque+niqe features in our eval-
uation to train a baseline model for comparison. The feature
brisque consists of luminance-based scene statistics values that
quantify possible losses of naturalness [18]. nige measures the
distance from naturalness using statistical features based on the
spatial-domain NSS model [17]. Both features were already
successfully used in the gaming video quality context [2].

Furthermore, we evaluated our developed features in sev-
eral small experiments, where we, e.g., introduced blockiness
or static content to videos, to validate the functionality of

Shttp://www.scikit-video.org/stable/



the features. Note that our newly collected features are not
restricted to gaming videos only, they can also be used for
general video-quality prediction.

C. Temporal Pooling of Feature Values

For a given video, we are now able to estimate different
feature values for each frame. Another step before the calcu-
lated values can be used in a final machine learning model is
to remove the time dependency, e.g. using temporal pooling
methods [29]. We decided to use a simple temporal pooling
based on mean and standard derivation.

Assuming we have a given feature array v, where one type
of feature values of each frame are stored. First, we calculate
the mean mean and standard derivation std of all values. In
addition, we store the first value first as pooled value. As
next step, we divide the per-frame features into 3 equidistant
groups. For each group g = [1,2,3], we calculate mean,
and standard derivation std,. In total, we calculate 9 values
per feature, independent of the duration of the used video
sequence. Furthermore, we repeat the pooling for all different
feature types that we included in the final model. Considering
that we extracted 12 different feature values per frame, we get
108 pooled feature values per video sequence. For comparison,
our brisque+nige baseline model uses 37 feature values per
frame, resulting in 333 pooled features per video sequence.

D. Machine Learning Pipeline

Video Feature Extraction Temporal Pooling Machine Learning Model

movement,
5y, staticness,

blockiness, per
i, ti, .. frame
values

mean, std, first .
—»| Feature Selection +
mean_g_1, ...3
Random Forest
std_g1, .. 3

y
>

Fig. 1. General Model Structure: Feature extraction for 360p center crop of
the rescaled input video, temporal pooling and training of machine learning
model (with feature selection).

Starting from the final pooled 108 features per video
sequence we train a machine learning model, shown in
Figure 1. We considered several machine learning methods
during development, e.g. random forest regression, support
vector regression (SVR), .... We finally use a random forest
regression algorithm, however also SVRs or gradient boosting
trees showed similar results. Our general idea of nofu is
not restricted to the applied machine learning component or
specific random forest implementation.

Before the random forest regression step, feature selection
using the ExtraTreesRegressor method is applied. For feature
selection, we use the 0.5 - mean as threshold value. As
parameters for the machine learning model we use 10 trees
in our random forest, all other parameters are default values.
Our implementation is based on python 3, scikit-learn [24],
scikit-image’ and scikit-video®.

As a comparison model for our evaluation, we use the same
model structure and model parameters with brisque+nige as
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features. For both features we use the implementation of scikit-
video.

IV. EVALUATION OF PROPOSED PREDICTION MODEL

To evaluate our selected features and machine learning
pipeline we use the publicly available GamingVideoSET [4]°,
that consists of 24 full-hd source videos [4] from different
gaming genres. For each experiment we trained two models:
nofu and brisque+nige. In addition, we also compare our mod-
els to other metrics that are included in the GamingVideoSET.

A. VMAF Predictions as Ground Truth

At first, we consider VMAF as ground truth for our model.
Here, we evaluate whether the introduced features and machine
learning pipeline are able to predict the FR scores of VMAF
in our NR approach. VMAF per-frame scores were already
successfully used for video quality prediction [10]. As a
pre-processing step, we transform the [0,100]-VMAF scores
linearly to a MOS scale of [1,5]. This ensures that we are able
to compare it with the MOS values later.

TABLE 11
MODEL PERFORMANCE VALUES, VMAF PREDICTIONS; 576 VIDEOS

model pearson  kendall ~ spearman rmse
nofu 0.96 0.82 0.95 0.22
brisqueNige 0.94 0.80 0.94 0.24
PSNR 0.87 0.68 0.87 28.58
SSIM 0.71 0.55 0.74 2.31
STRRED -0.53 -0.42 -0.61 151.44
SpeedQA -0.55 -0.45 -0.63  446.75

The general performance values for VMAF prediction are
summarized in Table II. It can be seen that both models
(brisque+nige and nofu) generally perform well. However,
the nofu predictions are still better than the brisque+niqe
baseline model. We conducted several (64) 10-fold cross
validation runs. They all showed similar results, reflected
by the statistics of the performance metrics. Our developed
model shows a Pearson correlation of ~ 0.96, Kendall of
~ 0.82 and Spearman with =~ 0.95. Furthermore, it has an
overall root mean square error (RMSE) of around 0.2. In
comparison, the brisque+niqge baseline model yields a slightly
lower Pearson correlation of ~ 0.94, lower Kendall of ~ 0.80
and lower Spearman with ~ 0.94. The RMSE of ~ 0.24
for the brisque+nige model is higher than with our nofu
model. Comparing also with other models available from [4],
nofu and the brisque+niqe baseline generally are the best
performing models. Surprisingly, PSNR as a non-perceptual
metric shows a rather good performance, too. However, a
reference video is needed for its calculation.

B. Subjective Scores as Ground Truth

In our second evaluation experiment, we focus on sub-
jective scores that are available for a subset of the Gam-
ingVideoSET [4]. Table III summarizes the performance met-
rics of all models. In general, it should be mentioned that
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TABLE III
MODEL PERFORMANCE VALUES: SUBSET OF GAMINGVIDEOSET; 90
VIDEOS
model pearson  kendall spearman rmse
nofu 0.91 0.75 0.91 0.42
brisqueNige 0.89 0.73 0.90 0.44
VMAF 0.86 0.69 0.86 0.64
SSIM 0.79 0.61 0.80 2.03
PSNR 0.74 0.57 0.74 29.37
SpeedQA -0.71 0.56 -0.74  488.83
STRRED -0.72 0.55 -0.74  160.48

Netflix’s VMAF metric is quite good in predicting subjective
scores, shown for example in [10] for general video streaming
quality. Here, PSNR, SpeedQA and STRRED show the worst
results. Their scores are not scaled on a [1,5]-scale, therefore
the RMSE values can be ignored.
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Fig. 2. Scatter plots for top-4 models, colors corresponds to different source
videos, SSIM x-axis is not [1,5]-scaled

For a more detailed analysis, we checked scatter correlation
plots. The top-4 performing models are shown in Figure 2. Our
introduced model nofu has a better overall performance than
VMAPF, further it is also better than our brisque+nige baseline
model, as indicated e.g. by the lower RMSE in comparison to
VMAF and brisque+nige. Furthermore, Figure 2 also shows
that the brisque+nige model has some strengths, e.g. in case
of low-quality videos. For further refinement of nofu it may be
combined with brisque+nige, which we will explore in future
experiments. In general, only two no-reference models show
a good performance, our new model nofu and our introduced
baseline brisque+nige model.

C. Discussion and Performance Analysis

We started with a model to predict VMAF scores on the full
set (576) of videos included in the GamingVideoSET [4]. Our
introduced features and model nofu was shown to provide
good performance. Using 10-fold cross validation we found
that our model shows a better performance than other metrics.
We further used a 360p crop of the recorded videos, to speed
up metric calculations. In additional experiments we analyzed
other center crops, and found out that 360p is the best trade-off
between speed and model accuracy.

In addition, we trained our model to predict the subjective
scores included in the employed database and found that also
in this case the overall performance of nofu is better than for
other metrics. Moreover, nofu outperforms VMAF, as the best
included metric in the GamingVideoSET, in case of prediction
subjective ratings, and in addition it does not require any
reference video.

nofu is also able to outperform the baseline model
brisque+nige in both scenarios. However, the two models have
a similar performance, indicating that the temporal pooling
method used for both delivers good results. Our reduced
feature set and minimal pooling strategy ensures that the
overall computational requirements of the model are as low
as possible. In future experiments, we will evaluate the com-
putation time.

In addition, we performed a source video based train and
validation fold approach for subjective score prediction. For
the 6 different video sources, we use 5 sources for training
and 1 for validation, we calculated correlation values and mean
values of all folds. We got Pearson (P) 0.77, Kendall (K) 0.59,
and Spearman (S) of 0.75 for our model nofu, and P 0.42, K
0.41 and S 0.50 for the brisque+niqge. It should be mentioned
that such an evaluation scenario is hard, because of the fact
that each garming video is from a different gaming genre. Also
here nofu outperforms brisque+niqe.

V. CONCLUSION

In this paper, we have first discussed the particular charac-
tristics of video streaming quality for gaming sessions. Beside
classical video streaming providers, there are platforms for live
gaming-video streaming, such as Twitch or YoutubeGaming.
In general, gaming videos have different requirements for
encoders and are related with different expectations from
end users. To measure and predict gaming video quality, we
introduced features that are based on already used state-of-
the-art features for general video quality, and complementary
own video features specifically developed for gaming-video
live-streaming evaluation. Our new features capture different
aspects of typical gaming videos, such as blockiness, staticness
and motion. We further described a quality prediction system
using machine learning algorithms. The final model uses a
random forest approach with a feature selection pipeline.
The developed model — nofu — uses a lightweight set of
features and a simple-to-calculate temporal pooling to predict
per-segment video quality scores, combining fast computa-
tion with high accuracy. Our temporal pooling approach is



based on statistical analysis of feature values that change
over time. As an additional optimization for computational
speed, a 360p center crop of the streamed video is used
instead of the full frame. We evaluated our model in two
different settings. As a first step, the VMAF scores provided
in the GamingVideoSET [4] were used for model training and
validation. In a second step, the subjective ratings included in
the dataset were used as prediction target. In both settings, our
model showed highly accurate predictions in terms of RMSE,
Pearson, Kendall and Spearman correlation. When evaluated
on subjective ratings, the model outperforms both the FR
metric VMAF and a baseline NR metric, brisque+nique,
trained for comparison. In future experiments, we will evaluate
our introduced features in different scenarios, e.g. for classical
video streaming, or streaming of 360° video content. Our
prototype implementation is written in python 3, representing
an easily portable code for a computationally fast algorithm. In
future work, a more detailed analysis of computation time will
be carried out. Due to its modular design, new features can
easily be added, including meta-data or bitstream information
as complementary features for an even more accurate gaming-
video quality prediction.
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