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Motivation
4 × more pixel

full-hd

4k

I increase of video resolution (full-HD, 4K/UHD-1, 8K/UHD-2, . . . )

I more processing time for video quality estimation required

I e.g. full-reference methods (VMAF); 45mins for 4K 10 s sequence

→ review of video quality models
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Video Quality Estimation

I categorized in no-ref, red-ref, full-ref models [13]

◦ PSNR, MS-SSIM [16, 15], VIF [14]: fast but not accurate

◦ Netflix’s VMAF [10, 7]: accurate, slow

◦ DNN based models: [2, 4, 3, 5, 6]: accurate and slower

◦ brisque+niqe [8, 9]: fast but not always accurate, . . .

I subjective tests: cross-lab evaluation Pinson and Wolf [11]: Pearson
correlations: 0.902 to 0.935 (≈ 4% error) for MOS,

→ general principle to speedup full-ref calculations
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Our Approach– cencro

center cropping yuv conversion

reference
video

distorted
video

pre-processing

vmaf calculation reports
can be skipped

overall computation time

vmaf(reference, distorted, center_crop)

I focus: per frame reduction: center cropping of frames → cencro

I metric: VMAF; processing time: tall = tdis + tref + tVMAF

I questions: what are suitable center crops? calculation speedup?
acceptable error?
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Our Approach

0 500 1000 1500 2000 2500 3000
0
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I total 18 center crop settings:
144, 192, 240, 300, 360, 420, 480, 510, 540, 630, 720, 840, 960, 1020,
1080, 1260, 1440, 1800

I widths adapted based on aspect ratio of reference video
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Evaluation – Datasets

codecs h264, h265, vp9
resolutions 360p 720p 1080p 2160p
bitrates in Mbit/s [0.2,0.75] [1,2] [2,7.5,15] [7.5,15,40]

I 4K videos: subset of AVT-VQDB-UHD-1 [12]; 150 encoded videos

I + GamingVideoSET [1]; 24 full-HD videos, 90 encoded videos
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Evaluation – Center Cropping – VMAF
I comparison VMAF score with center cropped VMAF score
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Evaluation – Center Cropping – VMAF Error

I mean absolute error per source video; VMAF ∈ [0, 100]
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Evaluation – Cencro – Correlations and Error

500 1000 1500
center crop

0.88

0.90

0.92

0.94

0.96

0.98

1.00

co
rre

la
tio

n 
w

ith
 V

M
AF

correlations with uncropped VMAF

pearson
kendall
spearman

500 1000 1500
center crop

0.70

0.75

0.80

0.85

0.90

co
rre

la
tio

n 
w

ith
 M

O
S

correlation with MOS scores

pearson_mos
kendall_mos
spearman_mos

500 1000 1500
center crop

0.1

0.2

0.3

0.4

0.5

0.6

R
M

SE

RMSE with vmaf and MOS scores

rmse
rmse_mos

I higher crop → lower RMSE, higher correlation

I error still acceptable (e.g. for 360p cc)
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Evaluation – Center Cropping – Error vs Time
I % error (MOS prediction) vs % tall ; 100%time ≈ 45 min
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I 360p → 5% cpu time; 4% PCC error; similar for other FR metrics;
Datasets (GamingVideoSET [1])
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Conclusion, Summary and Future Work

I overview of cencro

◦ speedup video quality calculation using center cropping of video frames

◦ analysis of possible center crop settings

I error and speedup

◦ 360p shows low error in case of 4K, comparable with cross-lab repeatition

◦ 360p time saving up to 95%

◦ 1080p can save up to 65% time with error of 2.5%

I open and next steps:

◦ evaluate on other videos, e.g. 360◦; automated optimal crop/pattern selection

◦ check reduced-/no-ref metrics
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Thank you for your attention

. . . . . . are there any questions?
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