
DeViQ – A deep no reference video quality model

Steve Göring Janto Skowronek Alexander Raake

Audiovisual Technology Group, Technische Universität Ilmenau, Germany;
Email: [steve.goering, janto.skowronek, alexander.raake]@tu-ilmenau.de,

January 31, 2018



Motivation

I most internet traffic generated via video streaming providers [4]

I user’s expectation: best possible video quality under every condition

I trending technologies: 4k/UHD, HDR, 360 degree, encoders, …

I automated monitoring/optimization of perceived video quality

→ a brief look on current pixel based video/image quality models
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Video/image quality models

I full-reference models highly accurate to human perception [18]

◦ e.g. Netflix’s VMAF [14] → reference video

I hand-crafted features [12, 14]

◦ new encoders/ technologies → new artefacts → new features

I models using deep neural networks [3, 11, 8, 5, 6, 9]

◦ patching to reduce input size → losses global connections; many patches for 4K

◦ training requires per frame quality scores → huge database

→ ideas for solving the identified research problems
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How to solve the identified problems?

I huge training database for no-reference model:

◦ generate ground-truth per frame data from full-reference model: VMAF [14, 10]

I hand-crafted features

◦ using a pre-trained DNN for automatic feature extraction: inception-v3 [17]

I patching and global connection; many patches for 4K resolution

◦ using hierarchical sub-images with larger block size: 299x299

→ introduce our model DeViQ (Deep Video Quality)
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DeViQ– General approach

I (1) automatic feature extraction
◦ pre-trained classification DNN
◦ hierarchical sub-images: full, 1/2 of each dimension, 1/4 and 1/8 = 85 images
◦ no-reference features; brisque+niqe [12, 13]

I (3) random forest model with (2) feature selection
I final quality score: mean value of each frame
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DeViQ – Evaluation – Dataset – Source Sequences
all source videos: UHD-I (3840x2160); 60 fps (except sintel∗); 10 s

train

harmonic [7] blender [2]∗ TUIL TUIL Sony [15] Netflix

validation

harmonic [7] blender [1] TUIL TUIL Sony [16] Netflix
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DeViQ – Evaluation – Conditions

I 3 codecs; 5 resolutions; 2/3 bitrates per resolution

I → encoded to 320 videos: train=50%; validation=50%; no overlapp

I calculated VMAF scores for ≈ 200k frames

I for validation: subjective test (22 participants; avg. age=26.7)

I comparison to retrained brisque+niqe model/ full-reference metrics
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DeViQ – Evaluation – Prediction vs. VMAF
average VMAF-scores with DeViQ and brisque+niqe predictions
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per sequence comparision

deviq
brisque+nique

method RMSE R2 pearson kendall spearman
deviq 18.87 0.60 0.84 0.66 0.84
brisque+nique 19.75 0.56 0.85 0.64 0.83
vifp 22.28 0.44 0.58 0.46 0.63
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DeViQ – Evaluation – Prediction vs. MOS
comparison of VMAF, DeViQ, brisque+niqe to MOS values
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comparision of scores to MOS values for each validation sequence

VMAF
DeViQ
brisque+nique

method RMSE R2 kendall pearson spearman
vmaf 0.55 0.76 0.72 0.92 0.89
deviq 0.70 0.61 0.61 0.84 0.81
brisque+nique 0.81 0.47 0.53 0.75 0.73
vifp 0.86 0.41 0.52 0.70 0.67
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Conclusion and Future Work

I identified main problems: hand-crafted features; patching; huge database
→ DeViQ (Deep Video Quality)

◦ → performs good compared to full-reference, no-reference models

I open points:

◦ frame and sub-image selection

◦ average for overall video quality

I DeViQ’s core idea: train a no-reference model based on a full-reference
model using a pre-trained image DNN
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Thank you for your attention

…… are there any questions?
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deviq,brisque+nique vs. vmaf

method RMSE R2 pearson kendall spearman
deviq 18.87 0.60 0.84 0.66 0.84
brisque+nique 19.75 0.56 0.85 0.64 0.83
vifp 22.28 0.44 0.58 0.46 0.63
msssim 48.99 -1.70 0.54 0.46 0.63
ssim 49.88 -1.80 0.48 0.44 0.60
psnrhvs 56.09 -2.55 0.33 0.52 0.72
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deviq,brisque+nique,vmaf vs. mos

method RMSE R2 cohen_d kendall pearson spearman
vmaf 0.55 0.76 0.24 0.72 0.92 0.89
deviq 0.70 0.61 0.19 0.61 0.84 0.81
brisque+nique 0.81 0.47 0.34 0.53 0.75 0.73
vifp 0.86 0.41 -0.34 0.52 0.70 0.67
msssim 1.70 -1.32 -1.72 0.46 0.69 0.61
ssim 1.74 -1.42 -1.76 0.45 0.65 0.60
psnrhvs 2.27 -3.15 0.30 0.60 0.34 0.76
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feature importance

for each 1000 feature values we summed the feature importance of our model;
subimage 85=no-reference features
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importance based on single features grouped by subimages; 8049 of 85037 features were used
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