DeViQ – A deep no reference video quality model

Steve Göring Janto Skowronek Alexander Raake

Audiovisual Technology Group, Technische Universität Ilmenau, Germany; Email: [steve.goering, janto.skowronek, alexander.raake]@tu-ilmenau.de,

January 31, 2018

لان TECHNISCHE UNIVERSITÄT ILMENAU

Ŧ··

CC: TECHNISCHE UNIVERSITÄT ILMENAU

most internet traffic generated via video streaming providers [4]

- user's expectation: best possible video quality under every condition
- ▶ trending technologies: 4k/UHD, HDR, 360 degree, encoders, ...
- automated monitoring/optimization of perceived video quality

CC: TECHNISCHE UNIVERSITÄT ILMENAU

- most internet traffic generated via video streaming providers [4]
- ▶ user's expectation: best possible video quality under every condition
- ▶ trending technologies: 4k/UHD, HDR, 360 degree, encoders, ...
- automated monitoring/optimization of perceived video quality

Ch: TECHNISCHE UNIVERSITÄT ILMENAU

- most internet traffic generated via video streaming providers [4]
- ▶ user's expectation: best possible video quality under every condition
- ▶ trending technologies: 4k/UHD, HDR, 360 degree, encoders, ...
- automated monitoring/optimization of perceived video quality

Ch: TECHNISCHE UNIVERSITÄT ILMENAU

- most internet traffic generated via video streaming providers [4]
- ▶ user's expectation: best possible video quality under every condition
- ▶ trending technologies: 4k/UHD, HDR, 360 degree, encoders, ...
- automated monitoring/optimization of perceived video quality

Ch: TECHNISCHE UNIVERSITÄT ILMENAU

- most internet traffic generated via video streaming providers [4]
- ▶ user's expectation: best possible video quality under every condition
- ▶ trending technologies: 4k/UHD, HDR, 360 degree, encoders, ...
- automated monitoring/optimization of perceived video quality

▶ full-reference models highly accurate to human perception [18]

- $\circ\,$ e.g. Netflix's VMAF [14] \rightarrow reference video
- ▶ hand-crafted features [12, 14]

 $\circ\,$ new encoders/ technologies \rightarrow new artefacts $\rightarrow\,$ new features

- ▶ models using deep neural networks [3, 11, 8, 5, 6, 9]
 - $\circ~$ patching to reduce input size \rightarrow losses global connections; many patches for 4K
 - $\circ~$ training requires per frame quality scores $\rightarrow~$ huge database

▶ full-reference models highly accurate to human perception [18]

- $\circ\,$ e.g. Netflix's VMAF [14] \rightarrow reference video
- ▶ hand-crafted features [12, 14]

 $\circ~$ new encoders/ technologies \rightarrow new artefacts $\rightarrow~$ new features

- ▶ models using deep neural networks [3, 11, 8, 5, 6, 9]
 - $\circ~$ patching to reduce input size \rightarrow losses global connections; many patches for 4K
 - $\circ~$ training requires per frame quality scores $\rightarrow~$ huge database

▶ full-reference models highly accurate to human perception [18]

- $\circ~$ e.g. Netflix's VMAF [14] \rightarrow reference video
- ▶ hand-crafted features [12, 14]
 - $\circ~$ new encoders/ technologies \rightarrow new artefacts $\rightarrow~$ new features
- ▶ models using deep neural networks [3, 11, 8, 5, 6, 9]
 - $\circ~$ patching to reduce input size \rightarrow losses global connections; many patches for 4K
 - $\circ~$ training requires per frame quality scores $\rightarrow~$ huge database

▶ full-reference models highly accurate to human perception [18]

- $\circ~$ e.g. Netflix's VMAF [14] \rightarrow reference video
- ▶ hand-crafted features [12, 14]
 - $\circ~$ new encoders/ technologies \rightarrow new artefacts $\rightarrow~$ new features
- ▶ models using deep neural networks [3, 11, 8, 5, 6, 9]
 - $\circ~$ patching to reduce input size \rightarrow losses global connections; many patches for 4K
 - $\circ~$ training requires per frame quality scores $\rightarrow~$ huge database

▶ full-reference models highly accurate to human perception [18]

- $\circ~$ e.g. Netflix's VMAF [14] \rightarrow reference video
- ▶ hand-crafted features [12, 14]
 - $\circ~$ new encoders/ technologies \rightarrow new artefacts $\rightarrow~$ new features
- ▶ models using deep neural networks [3, 11, 8, 5, 6, 9]
 - $\circ~$ patching to reduce input size \rightarrow losses global connections; many patches for 4K
 - $\circ~$ training requires per frame quality scores $\rightarrow~$ huge database

▶ full-reference models highly accurate to human perception [18]

- $\circ~$ e.g. Netflix's VMAF [14] \rightarrow reference video
- ▶ hand-crafted features [12, 14]
 - $\circ~$ new encoders/ technologies \rightarrow new artefacts $\rightarrow~$ new features
- ▶ models using deep neural networks [3, 11, 8, 5, 6, 9]
 - $\circ~$ patching to reduce input size \rightarrow losses global connections; many patches for 4K
 - $\circ~$ training requires per frame quality scores $\rightarrow~$ huge database

▶ full-reference models highly accurate to human perception [18]

- $\circ\,$ e.g. Netflix's VMAF [14] \rightarrow reference video
- ▶ hand-crafted features [12, 14]
 - $\circ~$ new encoders/ technologies \rightarrow new artefacts $\rightarrow~$ new features
- ▶ models using deep neural networks [3, 11, 8, 5, 6, 9]
 - $\circ~$ patching to reduce input size \rightarrow losses global connections; many patches for 4K
 - $\circ~$ training requires per frame quality scores $\rightarrow~$ huge database

▶ full-reference models highly accurate to human perception [18]

- $\circ\,$ e.g. Netflix's VMAF [14] \rightarrow reference video
- ▶ hand-crafted features [12, 14]
 - $\circ~$ new encoders/ technologies \rightarrow new artefacts $\rightarrow~$ new features
- ▶ models using deep neural networks [3, 11, 8, 5, 6, 9]
 - $\circ~$ patching to reduce input size \rightarrow losses global connections; many patches for 4K
 - $\circ~$ training requires per frame quality scores $\rightarrow~$ huge database

▶ full-reference models highly accurate to human perception [18]

- $\circ~$ e.g. Netflix's VMAF [14] \rightarrow reference video
- ▶ hand-crafted features [12, 14]
 - $\circ~$ new encoders/ technologies \rightarrow new artefacts $\rightarrow~$ new features
- ▶ models using deep neural networks [3, 11, 8, 5, 6, 9]
 - $\circ~$ patching to reduce input size \rightarrow losses global connections; many patches for 4K
 - $\circ~$ training requires per frame quality scores $\rightarrow~$ huge ~ database ~

▶ huge training database for no-reference model:

- generate ground-truth per frame data from full-reference model: VMAF [14, 10]
- ► hand-crafted features

• using a pre-trained DNN for automatic feature extraction: inception-v3 [17]

▶ patching and global connection; many patches for 4K resolution

• using hierarchical sub-images with larger block size: 299x299

ightarrow introduce our model DeViQ (**De**ep **Vi**deo **Q**uality)

▶ huge training database for no-reference model:

- generate ground-truth per frame data from full-reference model: VMAF [14, 10]
- ► hand-crafted features

• using a pre-trained DNN for automatic feature extraction: inception-v3 [17]

▶ patching and global connection; many patches for 4K resolution

• using hierarchical sub-images with larger block size: 299x299

ightarrow introduce our model DeViQ (**De**ep **Vi**deo **Q**uality)

▶ huge training database for no-reference model:

- generate ground-truth per frame data from full-reference model: VMAF [14, 10]
- ► hand-crafted features

• using a pre-trained DNN for automatic feature extraction: inception-v3 [17]

▶ patching and global connection; many patches for 4K resolution

o using hierarchical sub-images with larger block size: 299x299

ightarrow introduce our model DeViQ (**De**ep **Vi**deo **Q**uality)

▶ huge training database for no-reference model:

- generate ground-truth per frame data from full-reference model: VMAF [14, 10]
- ► hand-crafted features

• using a pre-trained DNN for automatic feature extraction: inception-v3 [17]

▶ patching and global connection; many patches for 4K resolution

o using hierarchical sub-images with larger block size: 299x299

 \rightarrow introduce our model DeViQ (Deep Video Quality)

DeViQ- General approach

▶ (1) automatic feature extraction

- pre-trained classification DNN
- $\circ\,$ hierarchical sub-images: full, 1/2 of each dimension, 1/4 and 1/8=85 images
- no-reference features; brisque+niqe [12, 13]
- ▶ (3) random forest model with (2) feature selection

final quality score: mean value of each frame

DeViQ- General approach

▶ (1) automatic feature extraction

- pre-trained classification DNN
- $\circ~$ hierarchical sub-images: full, 1/2 of each dimension, 1/4~ and 1/8=85~images
- \circ no-reference features; brisque+niqe [12, 13]
- ▶ (3) random forest model with (2) feature selection

final quality score: mean value of each frame

DeViQ- General approach

▶ (1) automatic feature extraction

- pre-trained classification DNN
- $\circ~$ hierarchical sub-images: full, 1/2 of each dimension, 1/4 and 1/8 =85 images
- \circ no-reference features; brisque+niqe [12, 13]
- ▶ (3) random forest model with (2) feature selection

final quality score: mean value of each frame

DeViQ – Evaluation – Dataset – Source Sequences TECHNISCHE UNIVE

all source videos: UHD-I (3840x2160); 60 fps (except sintel*); 10 s

train

harmonic [7] blender [2]*

TUIL

TUIL

Sony [15]

Netflix

validation

42...

 \blacktriangleright \rightarrow encoded to 320 videos: train=50%; validation=50%; no overlapp

▶ calculated VMAF scores for $\approx 200k$ frames

▶ for validation: subjective test (22 participants; avg. age=26.7)

comparison to retrained brisque+niqe model/ full-reference metrics

 \blacktriangleright \rightarrow encoded to 320 videos: train=50%; validation=50%; no overlapp

▶ calculated VMAF scores for $\approx 200k$ frames

▶ for validation: subjective test (22 participants; avg. age=26.7)

▶ comparison to retrained brisque+niqe model/ full-reference metrics

 \blacktriangleright \rightarrow encoded to 320 videos: train=50%; validation=50%; no overlapp

► calculated VMAF scores for $\approx 200k$ frames

▶ for validation: subjective test (22 participants; avg. age=26.7)

▶ comparison to retrained brisque+niqe model/ full-reference metrics

 \blacktriangleright \rightarrow encoded to 320 videos: train=50%; validation=50%; no overlapp

► calculated VMAF scores for $\approx 200k$ frames

▶ for validation: subjective test (22 participants; avg. age=26.7)

comparison to retrained brisque+niqe model/ full-reference metrics

 \blacktriangleright \rightarrow encoded to 320 videos: train=50%; validation=50%; no overlapp

▶ calculated VMAF scores for $\approx 200k$ frames

▶ for validation: subjective test (22 participants; avg. age=26.7)

▶ comparison to retrained brisque+niqe model/ full-reference metrics

DeViQ – Evaluation – Prediction vs. VMAF

average VMAF-scores with DeViQ and brisque+niqe predictions

method	RMSE	R^2	pearson	kendall	spearman
deviq	18.87	0.60	0.84	0.66	0.84
brisque+nique	19.75	0.56	0.85	0.64	0.83
vifp	22.28	0.44	0.58	0.46	0.63

Ŧ··

DeViQ – Evaluation – Prediction vs. MOS comparison of VMAF, DeViQ, brisque+niqe to MOS values

method	RMSE	R^2	kendall	pearson	spearman
vmaf	0.55	0.76	0.72	0.92	0.89
deviq	0.70	0.61	0.61	0.84	0.81
brisque+nique	e 0.81	0.47	0.53	0.75	0.73
vifp	0.86	0.41	0.52	0.70	0.67

T••

TECHNISCHE UNIVERSITÄT

ILMENAU

▶ identified main problems: hand-crafted features; patching; huge database \rightarrow DeViQ (**Deep Vi**deo **Q**uality)

 $\circ
ightarrow$ performs good compared to full-reference, no-reference models

▶ open points:

frame and sub-image selection

average for overall video quality.

▶ identified main problems: hand-crafted features; patching; huge database \rightarrow DeViQ (**Deep Vi**deo **Q**uality)

 $\circ \ \rightarrow$ performs good compared to full-reference, no-reference models

▶ open points:

frame and sub-image selection

average for overall video quality.

▶ identified main problems: hand-crafted features; patching; huge database \rightarrow DeViQ (**Deep Vi**deo **Q**uality)

 $\circ \ \rightarrow$ performs good compared to full-reference, no-reference models

▶ open points:

frame and sub-image selection

 $\circ\,$ average for overall video quality

▶ identified main problems: hand-crafted features; patching; huge database \rightarrow DeViQ (**Deep Vi**deo **Q**uality)

 $\circ \ \rightarrow$ performs good compared to full-reference, no-reference models

▶ open points:

 $\circ~$ frame and sub-image selection

 $\circ\,$ average for overall video quality

► identified main problems: hand-crafted features; patching; huge database → DeViQ (Deep Video Quality)

 $\circ \ \rightarrow$ performs good compared to full-reference, no-reference models

▶ open points:

 $\circ~$ frame and sub-image selection

 $\circ\;$ average for overall video quality

► identified main problems: hand-crafted features; patching; huge database → DeViQ (Deep Video Quality)

 $\circ \ \rightarrow$ performs good compared to full-reference, no-reference models

▶ open points:

 $\circ~$ frame and sub-image selection

 $\circ\;$ average for overall video quality

Thank you for your attention

..... are there any questions?

Ŧ··

References I

- [1] Blender Foundation. Bick Buck Bunny Distribution. URL: http://distribution.bbb3d.renderfarming.net/video/png (visited on 07/07/2017).
- [2] Blender Foundation. Sintel, the Durian Open Movie Project. URL: https://media.xiph.org/sintel/sintel-4k-tiff16/ (visited on 07/07/2017).
- [3] Sebastian Bosse et al. "Neural network-based full-reference image quality assessment". In: *Picture Coding Symposium (PCS), 2016.* IEEE. 2016, pp. 1–5.
- [4] Cisco. Whitepaper: Cisco Visual Networking Index:Forecast and Methodology, 2015-2020. 2015.

References II

- TECHNISCHE UNIVERSITÄT
- [5] Prajna Paramita Dash, Akshaya Mishra, and Alexander Wong. "Deep Quality: A Deep No-reference Quality Assessment System". In: arXiv preprint arXiv:1609.07170 (2016).
- [6] Prajna Paramita Dash, Alexander Wong, and Akshaya Mishra. "VeNICE: A very deep neural network approach to no-reference image assessment". In: Industrial Technology (ICIT), 2017 IEEE International Conference on. IEEE. 2017, pp. 1091–1096.
- [7] Harmonic. Free 4K Demo Footage Ultra HD Demo Footage. URL: https://www.harmonicinc.com/4k-demo-footage-download/ (visited on 07/07/2017).
- [8] Le Kang et al. "Convolutional neural networks for no-reference image quality assessment". In: *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2014, pp. 1733–1740.

References III

- [9] Jie Li et al. "No-reference image quality assessment using Prewitt magnitude based on convolutional neural networks". In: Signal, Image and Video Processing 10.4 (2016), pp. 609–616.
- J. Y. Lin et al. "A fusion-based video quality assessment (fvqa) index".
 In: Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific. Dec. 2014, pp. 1–5.
- [11] Vladimir V Lukin et al. "Combining full-reference image visual quality metrics by neural network." In: *Human Vision and Electronic Imaging*. 2015, 93940K.
- [12] Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik.
 "No-reference image quality assessment in the spatial domain". In: IEEE Transactions on Image Processing 21.12 (2012), pp. 4695–4708.

References IV

- [13] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. "Making a "completely blind" image quality analyzer". In: IEEE Signal Processing Letters 20.3 (2013), pp. 209–212.
- [14] Netflix. Netflix VMAF. URL: https://github.com/Netflix/vmaf (visited on 07/08/2017).
- [15] Sony. Camping in Nature. URL: http://4kmedia.org/sony-camping-in-nature-4k-demo/ (visited on 07/07/2017).
- [16] Sony. Surfing. URL: http://4kmedia.org/sony-surfing-uhd-4k-demo/ (visited on 07/07/2017).
- [17] Christian Szegedy et al. "Rethinking the Inception Architecture for Computer Vision". In: CoRR (2015).

References V

[18] Maria Torres Vega et al. "An experimental survey of no-reference video quality assessment methods". In: International Journal of Pervasive Computing and Communications 12.1 (2016), pp. 66–86.

deviq,brisque+nique vs. vmaf

method	RMSE	R^2	pearson	kendall	spearman
deviq	18.87	0.60	0.84	0.66	0.84
brisque+nique	19.75	0.56	0.85	0.64	0.83
vifp	22.28	0.44	0.58	0.46	0.63
msssim	48.99	-1.70	0.54	0.46	0.63
ssim	49.88	-1.80	0.48	0.44	0.60
psnrhvs	56.09	-2.55	0.33	0.52	0.72

method	RMSE	R^2	cohen_d	kendall	pearson	spearman
vmaf	0.55	0.76	0.24	0.72	0.92	0.89
deviq	0.70	0.61	0.19	0.61	0.84	0.81
brisque+nique	e 0.81	0.47	0.34	0.53	0.75	0.73
vifp	0.86	0.41	-0.34	0.52	0.70	0.67
msssim	1.70	-1.32	-1.72	0.46	0.69	0.61
ssim	1.74	-1.42	-1.76	0.45	0.65	0.60
psnrhvs	2.27	-3.15	0.30	0.60	0.34	0.76

for each 1000 feature values we summed the feature importance of our model; subimage 85=no-reference features

