deimeq – A Deep Neural Network Based Hybrid No-reference Image Quality Model

Steve Göring, Alexander Raake

Audiovisual Technology Group, Technische Universität Ilmenau, Germany; Email: [steve.goering, alexander.raake]@tu-ilmenau.de

November 26, 2018

technische Universität Ilmenau

technische Universität Ilmenau

number of posted photos increases daily¹

- ▶ no-reference image quality methods: hand-crafted features or DNNs
- ▶ end user's expectation: high quality, high resolutions, small filesize

ightarrow a brief analysis of current image/video quality models

¹for Flickr: average 1.63 million photos per day for 2017, see [fli]

technische Universität Ilmenau

- number of posted photos increases daily¹
- no-reference image quality methods: hand-crafted features or DNNs
- ▶ end user's expectation: high quality, high resolutions, small filesize

ightarrow a brief analysis of current image/video quality models

¹for Flickr: average 1.63 million photos per day for 2017, see [fli]

technische Universität Ilmenau

- number of posted photos increases daily¹
- no-reference image quality methods: hand-crafted features or DNNs
- ▶ end user's expectation: high quality, high resolutions, small filesize

ightarrow a brief analysis of current image/video quality models

¹for Flickr: average 1.63 million photos per day for 2017, see [fli]

technische Universität Ilmenau

- number of posted photos increases daily¹
- no-reference image quality methods: hand-crafted features or DNNs
- ▶ end user's expectation: high quality, high resolutions, small filesize
- \rightarrow a brief analysis of current image/video quality models

¹for Flickr: average 1.63 million photos per day for 2017, see [fli]

models using ...

- ▶ hand-crafted features, e.g., brisque [MMB12], niqe [MSB13]
 - $\circ~$ rely on analyzed distortions $\rightarrow~$ develop features/models independent on distortions
- ▶ using DNNs, e.g., VeNICE [DWM17], patch quality prediction [Wie+18]
 - $\circ\,$ using patches, smaller input resolutions \rightarrow higher resolutions, avoid pure patching
- diversity of image quality databases, e.g., TID2013 [Pon+15], Live-2 [SSB06], KonIQ-10k[LHS18], LIVEWILD [GB16]
 - $\circ~$ specific distortions or 'content diversity' \rightarrow generalizability of models
- ightarrow how to handle such problems?

models using ...

- ▶ hand-crafted features, e.g., brisque [MMB12], niqe [MSB13]
 - $\circ~$ rely on analyzed distortions \rightarrow develop features/models independent on distortions
- ▶ using DNNs, e.g., VeNICE [DWM17], patch quality prediction [Wie+18]
 - $\circ~$ using patches, smaller input resolutions $\rightarrow~$ higher resolutions, avoid pure patching
- diversity of image quality databases, e.g., TID2013 [Pon+15], Live-2 [SSB06], KonIQ-10k[LHS18], LIVEWILD [GB16]
 - $\circ\,$ specific distortions or 'content diversity' \rightarrow generalizability of models
- ightarrow how to handle such problems?

models using ...

- ▶ hand-crafted features, e.g., brisque [MMB12], niqe [MSB13]
 - $\circ~$ rely on analyzed distortions \rightarrow develop features/models independent on distortions
- ▶ using DNNs, e.g., VeNICE [DWM17], patch quality prediction [Wie+18]
 - $\circ\,$ using patches, smaller input resolutions \rightarrow higher resolutions, avoid pure patching
- diversity of image quality databases, e.g., TID2013 [Pon+15], Live-2 [SSB06], KonIQ-10k[LHS18], LIVEWILD [GB16]

 $\circ\,$ specific distortions or 'content diversity' $\rightarrow\,$ generalizability of models

ightarrow how to handle such problems?

models using ...

- ▶ hand-crafted features, e.g., brisque [MMB12], niqe [MSB13]
 - $\circ~$ rely on analyzed distortions \rightarrow develop features/models independent on distortions
- ▶ using DNNs, e.g., VeNICE [DWM17], patch quality prediction [Wie+18]
 - $\circ\,$ using patches, smaller input resolutions \rightarrow higher resolutions, avoid pure patching
- diversity of image quality databases, e.g., TID2013 [Pon+15], Live-2 [SSB06], KonIQ-10k[LHS18], LIVEWILD [GB16]

 $\circ~$ specific distortions or 'content diversity' $\rightarrow~$ generalizability of models

 \rightarrow how to handle such problems?

How to solve the identified problems?

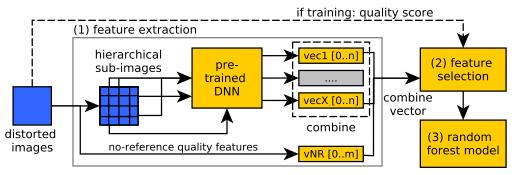
► avoiding of hand-crafted features → use pre-trained DNNs as feature extractor

- ► higher resolutions, pure patching → use hierarchical sub-imaging approach
- ► content diversity vs specific distortions → describe approach as meta-concept

▶ generalizability of models → train and validate on different databases

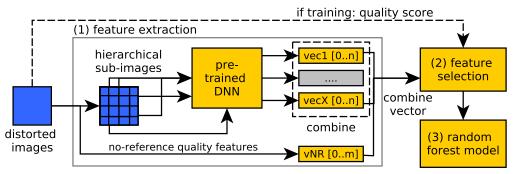
 \rightarrow introduce our model deimeq

technische Universität Ilmenau



- ▶ use pre-trained DNN as feature extractor, with summarization
- calculate state-of-the-art no-ref features
- ▶ train & validate random forest model; with feature selection
- ightarrow which pre-trained DNN is most suitable for image quality?

technische Universität Ilmenau

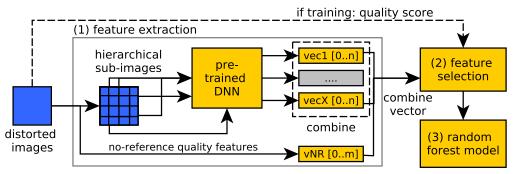


create hierarchical sub-images

▶ use pre-trained DNN as feature extractor, with summarization

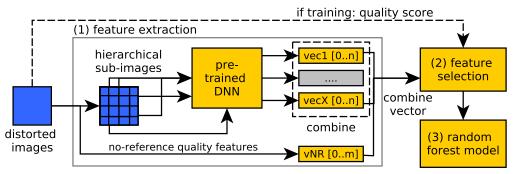
- calculate state-of-the-art no-ref features
- ▶ train & validate random forest model; with feature selection
- ightarrow which pre-trained DNN is most suitable for image quality?

technische Universität Ilmenau



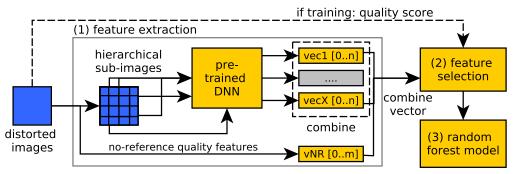
- use pre-trained DNN as feature extractor, with summarization
- calculate state-of-the-art no-ref features
- ▶ train & validate random forest model; with feature selection
- ightarrow which pre-trained DNN is most suitable for image quality?

لات TECHNISCHE UNIVERSITÄT ILMENAU



- use pre-trained DNN as feature extractor, with summarization
- calculate state-of-the-art no-ref features
- ▶ train & validate random forest model; with feature selection
- ightarrow which pre-trained DNN is most suitable for image quality?

لات TECHNISCHE UNIVERSITÄT ILMENAU



- use pre-trained DNN as feature extractor, with summarization
- calculate state-of-the-art no-ref features
- ▶ train & validate random forest model; with feature selection
- \rightarrow which pre-trained DNN is most suitable for image quality?

focus on image classification DNNs, similar to [GSR18], trained for ImageNet competition [Rus+15]

▶ 7 pre-trained DNNs from Keras [Cho+]:

- Xception [Cho16], InceptionV3 [Sze+15], InceptionResNetV2 [SIV16],
- VGG16 [SZ14], VGG19 [SZ14], ResNet50 [He+15] and MobileNet [How+17]
- \blacktriangleright removed last layer of each DNN \rightarrow feature values
- optionally extend by classical image quality features

 focus on image classification DNNs, similar to [GSR18], trained for ImageNet competition [Rus+15]

- ▶ 7 pre-trained DNNs from Keras [Cho+]:
 - Xception [Cho16], InceptionV3 [Sze+15], InceptionResNetV2 [SIV16],
 - VGG16 [SZ14], VGG19 [SZ14], ResNet50 [He+15] and MobileNet [How+17]
- \blacktriangleright removed last layer of each DNN \rightarrow feature values
- optionally extend by classical image quality features

- focus on image classification DNNs, similar to [GSR18], trained for ImageNet competition [Rus+15]
- ▶ 7 pre-trained DNNs from Keras [Cho+]:
 - Xception [Cho16], InceptionV3 [Sze+15], InceptionResNetV2 [SIV16],
 - VGG16 [SZ14], VGG19 [SZ14], ResNet50 [He+15] and MobileNet [How+17]
- \blacktriangleright removed last layer of each DNN \rightarrow feature values
- optionally extend by classical image quality features

- focus on image classification DNNs, similar to [GSR18], trained for ImageNet competition [Rus+15]
- ▶ 7 pre-trained DNNs from Keras [Cho+]:
 - $\circ~$ Xception [Cho16], InceptionV3 [Sze+15], InceptionResNetV2 [SIV16],
 - $\circ~$ VGG16 [SZ14], VGG19 [SZ14], ResNet50 [He+15] and MobileNet [How+17]
- \blacktriangleright removed last layer of each DNN \rightarrow feature values
- optionally extend by classical image quality features

- ▶ focus on image classification DNNs, similar to [GSR18], trained for ImageNet competition [Rus+15]
- ▶ 7 pre-trained DNNs from Keras [Cho+]:
 - Xception [Cho16], InceptionV3 [Sze+15], InceptionResNetV2 [SIV16],
 - $\circ~$ VGG16 [SZ14], VGG19 [SZ14], ResNet50 [He+15] and MobileNet [How+17]
- \blacktriangleright removed last layer of each DNN \rightarrow feature values
- optionally extend by classical image quality features

- ▶ focus on image classification DNNs, similar to [GSR18], trained for ImageNet competition [Rus+15]
- ▶ 7 pre-trained DNNs from Keras [Cho+]:
 - Xception [Cho16], InceptionV3 [Sze+15], InceptionResNetV2 [SIV16],
 - $\circ~$ VGG16 [SZ14], VGG19 [SZ14], ResNet50 [He+15] and MobileNet [How+17]
- \blacktriangleright removed last layer of each DNN \rightarrow feature values
- optionally extend by classical image quality features

- ► use brisque, niqe baseline models as reference
- deviq, deviq + {brisque, niqe}, with all possible DNNs
- ▶ cross validation on TID2013, Live-2: good and similar results,
- ► LIVEWILD: deviq+xception+brisque better than brisque+niqe
- ▶ main approach: cross-dataset evaluation
- ▶ hard task: train on Live-2, evaluate on TID2013
- ► TID2013: superset of distortions
- ightarrow evaluation

- ► use brisque, niqe baseline models as reference
- deviq, deviq + {brisque, niqe}, with all possible DNNs
- ▶ cross validation on TID2013, Live-2: good and similar results,
- ► LIVEWILD: deviq+xception+brisque better than brisque+niqe
- ▶ main approach: cross-dataset evaluation
- ▶ hard task: train on Live-2, evaluate on TID2013
- ► TID2013: superset of distortions
- ightarrow evaluation

- ► use brisque, niqe baseline models as reference
- deviq, deviq + {brisque, niqe}, with all possible DNNs
- ▶ cross validation on TID2013, Live-2: good and similar results,
- ► LIVEWILD: deviq+xception+brisque better than brisque+niqe
- ▶ main approach: cross-dataset evaluation
- ▶ hard task: train on Live-2, evaluate on TID2013
- ► TID2013: superset of distortions
- ightarrow evaluation

- ► use brisque, niqe baseline models as reference
- deviq, deviq + {brisque, niqe}, with all possible DNNs
- ▶ cross validation on TID2013, Live-2: good and similar results,
- ► LIVEWILD: deviq+xception+brisque better than brisque+niqe
- main approach: cross-dataset evaluation
- ▶ hard task: train on Live-2, evaluate on TID2013
- ► TID2013: superset of distortions

- ► use brisque, niqe baseline models as reference
- deviq, deviq + {brisque, niqe}, with all possible DNNs
- ▶ cross validation on TID2013, Live-2: good and similar results,
- ► LIVEWILD: deviq+xception+brisque better than brisque+niqe
- ▶ main approach: cross-dataset evaluation
- ▶ hard task: train on Live-2, evaluate on TID2013
- ► TID2013: superset of distortions

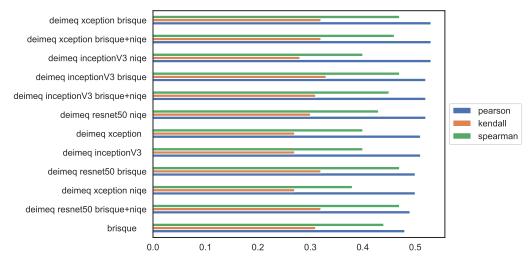
- ► use brisque, niqe baseline models as reference
- deviq, deviq + {brisque, niqe}, with all possible DNNs
- ▶ cross validation on TID2013, Live-2: good and similar results,
- ► LIVEWILD: deviq+xception+brisque better than brisque+niqe
- ▶ main approach: cross-dataset evaluation
- ▶ hard task: train on Live-2, evaluate on TID2013
- ► TID2013: superset of distortions

- ► use brisque, niqe baseline models as reference
- deviq, deviq + {brisque, niqe}, with all possible DNNs
- ▶ cross validation on TID2013, Live-2: good and similar results,
- ► LIVEWILD: deviq+xception+brisque better than brisque+niqe
- ▶ main approach: cross-dataset evaluation
- ▶ hard task: train on Live-2, evaluate on TID2013
- ► TID2013: superset of distortions

- ► use brisque, niqe baseline models as reference
- deviq, deviq + {brisque, niqe}, with all possible DNNs
- ▶ cross validation on TID2013, Live-2: good and similar results,
- ► LIVEWILD: deviq+xception+brisque better than brisque+niqe
- ▶ main approach: cross-dataset evaluation
- ▶ hard task: train on Live-2, evaluate on TID2013
- ► TID2013: superset of distortions

TECHNISCHE UNIVERSITÄT

top 12 models: trained on Live-2, validated on TID2013; sorted by pearson, kendall, spearman, rmse



▶ 3 out of 7 DNNs suitable for image quality prediction

- ▶ best: Xception > inceptionV3 > resnet50
- ▶ worst: vgg16 > mobilenet > incept-res
- ▶ improvements in combination with brisque+niqe
- cross-dataset evaluation still a hard task
- ightarrow next steps

▶ 3 out of 7 DNNs suitable for image quality prediction

- ▶ best: Xception > inceptionV3 > resnet50
- ▶ worst: vgg16 > mobilenet > incept-res
- ▶ improvements in combination with brisque+niqe
- cross-dataset evaluation still a hard task
- ightarrow next steps

- ▶ 3 out of 7 DNNs suitable for image quality prediction
- ▶ best: Xception > inceptionV3 > resnet50
- ▶ worst: vgg16 > mobilenet > incept-res
- ▶ improvements in combination with brisque+niqe
- cross-dataset evaluation still a hard task
- ightarrow next steps

- ▶ 3 out of 7 DNNs suitable for image quality prediction
- ▶ best: Xception > inceptionV3 > resnet50
- ▶ worst: vgg16 > mobilenet > incept-res
- ▶ improvements in combination with brisque+niqe
- cross-dataset evaluation still a hard task
- ightarrow next steps

- ▶ 3 out of 7 DNNs suitable for image quality prediction
- ▶ best: Xception > inceptionV3 > resnet50
- ▶ worst: vgg16 > mobilenet > incept-res
- ▶ improvements in combination with brisque+niqe
- cross-dataset evaluation still a hard task
- ightarrow next steps

- ▶ 3 out of 7 DNNs suitable for image quality prediction
- ▶ best: Xception > inceptionV3 > resnet50
- ▶ worst: vgg16 > mobilenet > incept-res
- ▶ improvements in combination with brisque+niqe
- cross-dataset evaluation still a hard task
- \rightarrow next steps

introduced a meta-concept for building no-reference image quality models

- $\circ~$ pre-trained DNNs \rightarrow avoids large new training datasets
- $\circ~$ avoiding of pure-patching \rightarrow using hierarchical sub-images
- $\circ~$ extendable by classical features \rightarrow hybrid DNN, RF model

performed evaluation of our model

- \circ cross validation per database \rightarrow good results
- \circ cross-database validation \rightarrow still a hard task
- \circ 3 out of 7 classification DNNs suitable \rightarrow Xception best

▶ open points, possible extensions:

- include other features, e.g., image aesthetic
- databases with larger resolutions (>4K)

introduced a meta-concept for building no-reference image quality models

$\circ~$ pre-trained DNNs \rightarrow avoids large new training datasets

 $\circ~$ avoiding of pure-patching \rightarrow using hierarchical sub-images

 $\circ~$ extendable by classical features \rightarrow hybrid DNN, RF model

performed evaluation of our model

- \circ cross validation per database \rightarrow good results
- $\circ~{\rm cross}{\mbox{-}{\rm database}}$ validation $\rightarrow~{\rm still}$ a hard task
- \circ 3 out of 7 classification DNNs suitable \rightarrow Xception best

▶ open points, possible extensions:

- include other features, e.g., image aesthetic
- databases with larger resolutions (>4K)

- introduced a meta-concept for building no-reference image quality models
 - $\circ~$ pre-trained DNNs \rightarrow avoids large new training datasets
 - $\circ~$ avoiding of pure-patching $\rightarrow~$ using hierarchical sub-images
 - $\circ~$ extendable by classical features \rightarrow hybrid DNN, RF model
- performed evaluation of our model
 - \circ cross validation per database ightarrow good results
 - $\circ~{\rm cross}{\mbox{-}{\rm database}}$ validation $\rightarrow~{\rm still}$ a hard task
 - \circ 3 out of 7 classification DNNs suitable \rightarrow Xception best
- ▶ open points, possible extensions:
 - include other features, e.g., image aesthetic
 - databases with larger resolutions (>4K)

- introduced a meta-concept for building no-reference image quality models
 - $\circ~$ pre-trained DNNs \rightarrow avoids large new training datasets
 - $\circ~$ avoiding of pure-patching $\rightarrow~$ using hierarchical sub-images
 - $\circ~$ extendable by classical features \rightarrow hybrid DNN, RF model
- performed evaluation of our model
 - \circ cross validation per database ightarrow good results
 - $\circ~{\rm cross}{\mbox{-}{\rm database}}$ validation $\rightarrow~{\rm still}$ a hard task
 - \circ 3 out of 7 classification DNNs suitable \rightarrow Xception best
- ▶ open points, possible extensions:
 - include other features, e.g., image aesthetic
 - databases with larger resolutions (>4K)

introduced a meta-concept for building no-reference image quality models

- $\circ~$ pre-trained DNNs \rightarrow avoids large new training datasets
- $\circ~$ avoiding of pure-patching $\rightarrow~$ using hierarchical sub-images
- $\circ~$ extendable by classical features \rightarrow hybrid DNN, RF model

performed evaluation of our model

- $\circ~{\rm cross}$ validation per database $\rightarrow~{\rm good}~{\rm results}$
- $\circ~\mbox{cross-database}$ validation \rightarrow still a hard task
- $\circ~$ 3 out of 7 classification DNNs suitable \rightarrow Xception best
- ▶ open points, possible extensions:
 - include other features, e.g., image aesthetic
 - databases with larger resolutions (>4K)

- introduced a meta-concept for building no-reference image quality models
 - $\circ~$ pre-trained DNNs \rightarrow avoids large new training datasets
 - $\circ~$ avoiding of pure-patching $\rightarrow~$ using hierarchical sub-images
 - $\circ~$ extendable by classical features \rightarrow hybrid DNN, RF model
- performed evaluation of our model
 - $\circ~\mbox{cross}$ validation per database $\rightarrow~\mbox{good}~\mbox{results}$
 - $\circ~\mbox{cross-database}$ validation $\rightarrow~\mbox{still}$ a hard task
 - $\circ~$ 3 out of 7 classification DNNs suitable \rightarrow Xception best
- ▶ open points, possible extensions:
 - include other features, e.g., image aesthetic
 - databases with larger resolutions (>4K)

- introduced a meta-concept for building no-reference image quality models
 - $\circ~$ pre-trained DNNs \rightarrow avoids large new training datasets
 - $\circ~$ avoiding of pure-patching $\rightarrow~$ using hierarchical sub-images
 - $\circ~$ extendable by classical features \rightarrow hybrid DNN, RF model
- performed evaluation of our model
 - $\circ~\mbox{cross}$ validation per database $\rightarrow~\mbox{good}~\mbox{results}$
 - $\circ~\mbox{cross-database}$ validation \rightarrow still a hard task
 - $\circ~$ 3 out of 7 classification DNNs suitable \rightarrow Xception best
- ▶ open points, possible extensions:
 - include other features, e.g., image aesthetic
 - databases with larger resolutions (>4K)

- introduced a meta-concept for building no-reference image quality models
 - $\circ~$ pre-trained DNNs \rightarrow avoids large new training datasets
 - $\circ~$ avoiding of pure-patching $\rightarrow~$ using hierarchical sub-images
 - $\circ~$ extendable by classical features \rightarrow hybrid DNN, RF model
- performed evaluation of our model
 - $\circ~\mbox{cross}$ validation per database $\rightarrow~\mbox{good}~\mbox{results}$
 - $\circ~\mbox{cross-database}$ validation $\rightarrow~\mbox{still}$ a hard task
 - $\circ~$ 3 out of 7 classification DNNs suitable \rightarrow Xception best
- ▶ open points, possible extensions:
 - include other features, e.g., image aesthetic
 - databases with larger resolutions (>4K)

- introduced a meta-concept for building no-reference image quality models
 - $\circ~$ pre-trained DNNs \rightarrow avoids large new training datasets
 - $\circ~$ avoiding of pure-patching $\rightarrow~$ using hierarchical sub-images
 - $\circ~$ extendable by classical features \rightarrow hybrid DNN, RF model
- performed evaluation of our model
 - $\circ~\mbox{cross}$ validation per database $\rightarrow~\mbox{good}~\mbox{results}$
 - $\circ~\mbox{cross-database}$ validation $\rightarrow~\mbox{still}$ a hard task
 - $\circ~$ 3 out of 7 classification DNNs suitable \rightarrow Xception best
- ▶ open points, possible extensions:
 - include other features, e.g., image aesthetic
 - databases with larger resolutions (>4K)

- introduced a meta-concept for building no-reference image quality models
 - $\circ~$ pre-trained DNNs \rightarrow avoids large new training datasets
 - $\circ~$ avoiding of pure-patching $\rightarrow~$ using hierarchical sub-images
 - $\circ~$ extendable by classical features \rightarrow hybrid DNN, RF model
- performed evaluation of our model
 - $\circ~\mbox{cross}$ validation per database $\rightarrow~\mbox{good}~\mbox{results}$
 - $\circ~\mbox{cross-database}$ validation $\rightarrow~\mbox{still}$ a hard task
 - $\circ~$ 3 out of 7 classification DNNs suitable \rightarrow Xception best
- ▶ open points, possible extensions:
 - o include other features, e.g., image aesthetic
 - databases with larger resolutions (>4K)

- introduced a meta-concept for building no-reference image quality models
 - $\circ~$ pre-trained DNNs \rightarrow avoids large new training datasets
 - $\circ~$ avoiding of pure-patching $\rightarrow~$ using hierarchical sub-images
 - $\circ~$ extendable by classical features \rightarrow hybrid DNN, RF model
- performed evaluation of our model
 - $\circ~\mbox{cross}$ validation per database $\rightarrow~\mbox{good}~\mbox{results}$
 - $\circ~\mbox{cross-database}$ validation $\rightarrow~\mbox{still}$ a hard task
 - $\circ~$ 3 out of 7 classification DNNs suitable \rightarrow Xception best
- ▶ open points, possible extensions:
 - o include other features, e.g., image aesthetic
 - databases with larger resolutions (>4K)

Thank you for your attention

..... are there any questions?

References I

[Cho+] François Chollet et al. *Keras*. https://github.com/keras-team/keras.

- [Cho16] François Chollet. "Xception: Deep Learning with Depthwise Separable Convolutions". In: *CoRR* (2016).
- [DWM17] Prajna Paramita Dash, Alexander Wong, and Akshaya Mishra. "VeNICE: A very deep neural network approach to no-reference image assessment". In: ICIT, 2017 IEEE Int. Conf. on. IEEE. 2017, pp. 1091–1096.

[fli]

flickr. Upload statistics. URL: https: //www.flickr.com/photos/franckmichel/6855169886/ (visited on 06/15/2018).

References II

[GB16] Deepti Ghadiyaram and Alan C Bovik. "Massive online crowdsourced study of subjective and objective picture quality".
In: *IEEE Trans. Image Process* 25.1 (2016), pp. 372–387.

- [GSR18] Steve Göring, Janto Skowronek, and Alexander Raake. "DeViQ A deep no reference video quality model". In: *Electronic Imaging* (Jan. 2018).
- [He+15] Kaiming He et al. "Deep Residual Learning for Image Recognition". In: *CoRR* (2015).
- [How+17] Andrew G. Howard et al. "MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications". In: CoRR (2017).
- [LHS18] Hanhe Lin, Vlad Hosu, and Dietmar Saupe. *KonlQ-10K: Towards an ecologically valid and large-scale IQA database*. 2018.

References III

- [MMB12] Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. "No-reference image quality assessment in the spatial domain". In: *IEEE Trans. Image Process.* 21.12 (2012), pp. 4695–4708.
- [MSB13] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. "Making a "completely blind" image quality analyzer". In: IEEE Signal Process. Lett. 20.3 (2013), pp. 209–212.
- [Pon+15] Nikolay Ponomarenko et al. "Image database TID2013: Peculiarities, results and perspectives". In: Signal Proc.: Image Communication 30 (2015), pp. 57–77.
- [Rus+15] Olga Russakovsky et al. "ImageNet Large Scale Visual Recognition Challenge". In: *IJCV* 115.3 (2015), pp. 211–252.
- [SIV16] Christian Szegedy, Sergey loffe, and Vincent Vanhoucke. "Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning". In: *CoRR* abs/1602.07261 (2016).

References IV

- [SSB06] Hamid R Sheikh, Muhammad F Sabir, and Alan C Bovik. "A statistical evaluation of recent full reference image quality assessment algorithms". In: *IEEE Trans. Image Process.* 15.11 (2006), pp. 3440–3451.
- [SZ14] Karen Simonyan and Andrew Zisserman. "Very Deep Convolutional Networks for Large-Scale Image Recognition". In: *CoRR* (2014).
- [Sze+15] Christian Szegedy et al. "Rethinking the Inception Architecture for Computer Vision". In: *CoRR* (2015).
- [Wie+18] Oliver Wiedemann et al. "Disregarding the Big Picture: Towards Local Image Quality Assessment". In: *QoMEX*. Sardinia, Italy, May 2018.

LIVEWILD

technische Universität

Table: Top 10 performance of *deimeq* model variants and *brisque*, P=pearson, K=kendall and S=spearman correlations and RMSE values; **B**=brisque/**N**iqe as additional features; sorted by correlations; crossvalidation on LIVEWILD

model	used dnn	+feat.	Р	К	S	RMSE
deimeq+ deimeq deimeq deimeq*	xception xception inceptionV3 xception	B B+N B+N	0.62 0.62 0.6 0.6	0.42 0.41 0.4 0.4	0.6 0.59 0.58 0.57	14.98 15.02 15.29 15.32
brisque deimeq brisque	xception	N N	0.6 0.6 0.59	0.39 0.4 0.39	0.57 0.57 0.56	15.38 15.4 15.44
deimeq deimeq deimeq	mobilenet inceptionV3 inceptionV3	B+N N B	0.59 0.59 0.59	0.4 0.39 0.39	0.57 0.57 0.57	15.43 15.49 15.53

Table: Image Quality Assessment Datasets

	Live-2	TID2013
# source images	29	25
# distortion types	5	24
# total distorted images	779	3000
image resolution (mostly)	768×512	512×384
quality score min/avg/max	0/51.5/100	3.4/62.1/100