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Motivation

I number of posted photos increases daily1

I no-reference image quality methods: hand-crafted features or DNNs

I end user’s expectation: high quality, high resolutions, small filesize

→ a brief analysis of current image/video quality models

1for Flickr: average 1.63 million photos per day for 2017, see [fli]
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Image/Video Quality Prediction
models using . . .

I hand-crafted features, e.g., brisque [MMB12], niqe [MSB13]

◦ rely on analyzed distortions → develop features/models independent on distortions

I using DNNs, e.g., VeNICE [DWM17], patch quality prediction [Wie+18]

◦ using patches, smaller input resolutions → higher resolutions, avoid pure patching

I diversity of image quality databases, e.g., TID2013 [Pon+15],
Live-2 [SSB06], KonIQ-10k[LHS18], LIVEWILD [GB16]

◦ specific distortions or ’content diversity’ → generalizability of models

→ how to handle such problems?
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How to solve the identified problems?

I avoiding of hand-crafted features
→ use pre-trained DNNs as feature extractor

I higher resolutions, pure patching
→ use hierarchical sub-imaging approach

I content diversity vs specific distortions
→ describe approach as meta-concept

I generalizability of models
→ train and validate on different databases

→ introduce our model deimeq

3 / 16



Our general approach

I create hierarchical sub-images
I use pre-trained DNN as feature extractor, with summarization
I calculate state-of-the-art no-ref features
I train & validate random forest model; with feature selection
→ which pre-trained DNN is most suitable for image quality?
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Considered DNNs

I focus on image classification DNNs, similar to [GSR18], trained for
ImageNet competition [Rus+15]

I 7 pre-trained DNNs from Keras [Cho+]:

◦ Xception [Cho16], InceptionV3 [Sze+15], InceptionResNetV2 [SIV16],

◦ VGG16 [SZ14], VGG19 [SZ14], ResNet50 [He+15] and MobileNet [How+17]

I removed last layer of each DNN → feature values

I optionally extend by classical image quality features
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Evaluation Approach and used Datasets

I use brisque, niqe baseline models as reference

I deviq, deviq + {brisque, niqe}, with all possible DNNs

I cross validation on TID2013, Live-2: good and similar results,

I LIVEWILD: deviq+xception+brisque better than brisque+niqe

I main approach: cross-dataset evaluation

I hard task: train on Live-2, evaluate on TID2013

I TID2013: superset of distortions

→ evaluation
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Evaluation: Train Live-2, Validate TID2013 (1)

0.0 0.1 0.2 0.3 0.4 0.5

brisque    

deimeq resnet50 brisque+niqe

deimeq xception niqe

deimeq resnet50 brisque

deimeq inceptionV3  

deimeq xception  

deimeq resnet50 niqe

deimeq inceptionV3 brisque+niqe

deimeq inceptionV3 brisque

deimeq inceptionV3 niqe

deimeq xception brisque+niqe

deimeq xception brisque

top 12 models: trained on Live-2, validated on TID2013; 
 sorted by pearson, kendall, spearman, rmse

pearson
kendall
spearman
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Evaluation: Train Live-2, Validate TID2013 (2)

I 3 out of 7 DNNs suitable for image quality prediction

I best: Xception > inceptionV3 > resnet50

I worst: vgg16 > mobilenet > incept-res

I improvements in combination with brisque+niqe

I cross-dataset evaluation still a hard task

→ next steps
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Conclusion and Future Work

I introduced a meta-concept for building no-reference image quality models
◦ pre-trained DNNs → avoids large new training datasets

◦ avoiding of pure-patching → using hierarchical sub-images

◦ extendable by classical features → hybrid DNN, RF model

I performed evaluation of our model
◦ cross validation per database → good results

◦ cross-database validation → still a hard task

◦ 3 out of 7 classification DNNs suitable → Xception best

I open points, possible extensions:
◦ include other features, e.g., image aesthetic

◦ databases with larger resolutions (>4K)
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Thank you for your attention

. . . . . . are there any questions?
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LIVEWILD

Table: Top 10 performance of deimeq model variants and brisque, P=pearson, K=kendall
and S=spearman correlations and RMSE values; B=brisque/Niqe as additional features;
sorted by correlations; crossvalidation on LIVEWILD

model used dnn +feat. P K S RMSE

deimeq+ xception B 0.62 0.42 0.6 14.98
deimeq xception B+N 0.62 0.41 0.59 15.02
deimeq inceptionV3 B+N 0.6 0.4 0.58 15.29
deimeq* xception 0.6 0.4 0.57 15.32

brisque N 0.6 0.39 0.57 15.38
deimeq xception N 0.6 0.4 0.57 15.4
brisque 0.59 0.39 0.56 15.44

deimeq mobilenet B+N 0.59 0.4 0.57 15.43
deimeq inceptionV3 N 0.59 0.39 0.57 15.49
deimeq inceptionV3 B 0.59 0.39 0.57 15.53
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LIVE 2, TID2013

Table: Image Quality Assessment Datasets

Live-2 TID2013

# source images 29 25
# distortion types 5 24
# total distorted images 779 3000
image resolution (mostly) 768x512 512x384
quality score min/avg/max 0/51.5/100 3.4/62.1/100
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