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Abstract—Current no reference image quality assessment mod-
els are mostly based on hand-crafted features (signal, computer
vision, . . . ) or deep neural networks. Using DNNs for image
quality prediction leads to several problems, e.g. the input size
is restricted; higher resolutions will increase processing time
and memory consumption. Large inputs are handled by image
patching and aggregation a quality score. In a pure patching
approach connections between the sub-images are getting lost.
Also, a huge dataset is required for training a DNN from scratch,
though only small datasets with annotations are available. We
provide a hybrid solution (deimeq) to predict image quality using
DNN feature extraction combined with random forest models.
Firstly, deimeq uses a pre-trained DNN for feature extraction in
a hierarchical sub-image approach, this avoids a huge training
dataset. Further, our proposed sub-image approach circumvents
a pure patching, because of hierarchical connections between the
sub-images. Secondly, deimeq can be extended using signal-based
features from state-of-the art models. To evaluate our approach,
we choose a strict cross-dataset evaluation with the Live-2 and
TID2013 datasets with several pre-trained DNNs. Finally, we
show that deimeq and variants of it perform better or similar
than other methods.

Index Terms—Image analysis, Machine learning, Image quality

I. INTRODUCTION

Today digital images are everywhere. With smartphones and
their built-in cameras as well as a variety of further entry-
level up to professional digital cameras, million1 pictures get
uploaded to social media sites such as Instagram, Flickr or
Facebook. Video and image quality assessment methods are
key factors in building new compression algorithms to reduce
file size, or to assess the quality-impact due to technical factors
related with the employed camera system. Especially users
want to get the best quality in every possible scenario, e.g. in
rural areas with mobile connection or a fixed connection.

Also for robust and highly accurate pixel-based video qual-
ity models, it is important to have good performing underlying
image quality models. For example, Netflix’s VMAF [26,
18] is based on several image quality models. Considering,
that in real world applications, a user or researcher will not
have access to a reference video or image. This is why no-
reference video and image quality assessment methods are
getting more and more important. No-reference image quality
models are mostly based on hand-crafted features (signal-
based, computer-vision-based,. . . ) [23, 14] or deep neural
networks (DNNs) [13, 5, 1]. DNNs are already successfully

1for Flickr: average 1.63 million photos per day for 2017, see [7]

used to address several image-related problems, for example
classification [34], segmentation, face-detection, and more.

Especially for quality prediction, most existing models use
a patching approach to avoid large input image sizes to
DNNs (e.g. [13, 5]), because such large sizes result in large
processing time or high memory consumption. The provided
patching solution divides the input image into several smaller
blocks and calculates, for each block, a quality score that later
is aggregated to a final overall score. A pure patching-based
approach leads to the problem that connected image portions
and distortions are lost and therefore are not considered by the
model. Furthermore, for training a new DNN from scratch, a
huge human-annotated database is required.

A number of quality-annotated image datasets exists, for ex-
ample Live-2 [30, 31] and TID2013 [28]. They only consider a
relatively small number of images (e.g. TID2013: 25; Live-2:
29) with several distortion types, to finally provide 800-3000
distorted images. Another image dataset is KonIQ-10k [17],
that does not include quality distortions like TID2013 or Live-
2. Comparing to other image problems such as image clas-
sification (e.g. ImageNet competition: 150,000 images [29]),
these databases are relatively small. However, a full re-training
is not required in every use case, for example using transfer-
learning.

A pre-trained DNN could be used as basis for re-training to
a different problem space. In turn, it is hard to include in such
a re-training process other, e.g. quality related, feature values
without changing the complete DNN.

Our general idea – called deimeq – is to build an image
quality model using a pre-trained DNN as automatic feature
extractor. Instead of a pure patching approach, we are using
hierarchically created sub-images, where the final features
are aggregated. Later, the features are passed to a random
forest model with feature selection. Before this step, the
DNN features are optionally extended by state-of-the-art no-
reference features. The name deimeq of our model stands for
deep image no-reference hybrid model to estimate quality.

We will analyze the following identified research questions
in our paper. Firstly, which pre-trained DNN can be used in
combination with hierarchical sub-images for quality predic-
tion? Secondly, which performance compared to other state-
of-the-art models can be achieved using deimeq? Thirdly, will
a combination of state-of-the-art no-reference features with
our DNN-based features lead to a better overall prediction
performance?



The paper is organized as follows: In Section II, a brief
overview of the state-of-the-art image and video quality mod-
els is given. We discuss the main differentiating aspects of our
model compared to the related work. Further, we describe our
overall architecture in more detail in Section III. We conducted
several experiments for evaluation of our proposed model,
as described in Section IV, using a cross-dataset approach.
Finally, we conclude with a discussion on the model and
provide a short outlook and ideas for future work in Section V.

II. RELATED WORK

Many full-reference, no- or reduced reference image or
video quality models have been described in the current
literature. We will focus on no-reference pixel-based image- or
video-quality metrics that either use hand-crafted features, are
related to deep neural networks or use other machine learning
techniques.

A. Models using hand-crafted features

Netflix’s VMAF metric achieved quite good results in
predicting human ratings [26, 18]. VMAF is a compound video
quality metric, it consists of several full-reference metrics
and a per-frame motion estimator. Using these features, a
Support Vector Machine (SVM) is trained to learn weights for
calculating a combined quality score. VMAF is a full-reference
video quality model. As several other more recent models, it
uses a machine learning algorithm for final aggregation of the
quality scores.

Besides video quality models, also several no-reference
image quality models use a machine-learning-based feature
integration. For example, brisque [23] consists of luminance-
based scene statistics features that quantify possible losses
of naturalness, and the SSEQ [20] model uses entropy-based
spatial and spectral features (block- and DCT-based). For both
models the underlying features are combined using a support
vector regressor or similar regression algorithm to derive the
final quality score.

Several other no-reference models exist that use hand-
crafted features in combination with machine learning ap-
proaches [19, 24, 25]. For example, Liu et al. [19] introduces
a feature set based on gradient orientations that is finally com-
bined using a neural network. Currently, deep neural networks
are used in several imaging applications such as classification
or segmentation, where they show a good performance.

B. Models using DNNs

Hand-crafted features need to be modified or re-created if
new distortions or new technologies appear. DNNs do not
need such features and can take images as direct input. They
were already successfully applied in a number of studies
to still-image quality prediction [21]. For instance, Kang
et al. describes a no-reference image quality metric based
on a convolutional neural network using patches of 32x32
pixels for images of 512x768 resolution [13]. Similarly, Dash
et al. also uses patches (64x64 pixels) to train a DNN. In
their experiments, they achieved good regression results [5],

for example reaching an accuracy of 98% using the CSIQ
dataset [15]. However, in many state-of-the-art papers, only
results for a cross-validation using the same databases are
reported.

Another trend for DNN-based image quality models is the
type of DNN used. For example, the VeNICE model [6] uses
a pre-trained DNN (VGG16 [32]) with a patch size of 32x32
pixels. This shows that re-training from scratch is not required
for quality prediction.

Furthermore, there are other similar approaches for no-
reference image quality estimation using patches in combi-
nation with DNNs [16, 35]. Wiedemann et al. are focusing on
a two steps approach, prediction importance of patches and
later aggregating a final quality score using DNNs. In addition,
approaches to image or video quality prediction without pure
patching have been reported in the literature as well [2, 11].
For example, Göring et al. [9] are using a hierarchical sub-
image creation approach combined with a pre-trained DNN
to estimate VMAF quality scores as the first type of ground-
truth data towards a no-reference video quality model trained
and validated on video quality tests with users. To this aim,
they apply the InceptionV3 DNN [34] for feature extraction,
addressing encoding artifacts for the use-case of 4K video
quality prediction.

C. Summary and identified key aspects

Considering the current state of the art image quality
models, a few observations can be made. No-reference image-
quality models are typically based on machine learning,
such as SVMs, SVRs or random forest models, or rely on
DNNs, mostly employ patching, and sometimes apply other
approaches than patching. However, good performing no-
reference models still use hand-crafted features in combination
with regression algorithms to calculate the final score.

Current DNN-based models use small patches and are
trained on low-resolution images, to avoid larger processing
time. Patching does not preserve the global connections of
distortions. Designing and re-training a DNN from scratch
is a complex process, regarding processing time and input-
parameter variability. Moreover, such a re-training also re-
quires a large human-annotated database.

Furthermore, most approaches use a cross-validation ap-
proach in their papers. Instead, we will focus our approach on
a cross-dataset evaluation, where completely separate datasets
are used for validation. We also use complementary new
distortion types in our validation step, to verify the general
performance of our model. This circumvents the problem of
distortion-specific features or models.

Our deimeq model will focus on the identified aspects and
problems as described above. To tackle these, first, deimeq
uses hierarchically sub-image creation and processing, second
a pre-trained DNN as feature extractor is employed and last,
we are able to extend the generated features with further no-
reference image quality methods.



Fig. 1. General model structure of deimeq; a pre-trained DNN is used together
with no-reference features to train a final model component with feature
selection. For each input image, hierarchically created sub-images are used.

III. PROPOSED MODEL ARCHITECTURE

In the following Section we describe in detail how deimeq
works. The system uses a two-step training and validation
approach. In the first, training step, the model is trained using a
given feature set and training image database. The second step
is the validation part, where the pre-trained model is applied to
unknown images. Figure 1 shows the general model structure
of deimeq, consisting of three main steps: (1) feature extraction
with summarization to avoid huge dimensions and extension
with state-of-the-art no-reference model features, (2) feature
selection and (3) training of machine learning model.

A. DNN feature extraction and summarization

A pre-trained DNN is used as feature extractor. Each input
image is divided into several sub-images in a hierarchical
manner. All generated images are then rescaled to the input
size of the DNN and processed. With this hierarchical ap-
proach, the smallest patch size to be chosen for a given model
implementation depends on the input-image resolution of the
underlying pre-trained DNN model. The smallest patch size
is chosen so that the respective sub-image is just not down-
scaled (i.e. it is upscaled or preserved in size) when using
it as input to the DNN. For example, let input images be
of resolution wi · hi (with width wi and height hi of the
input image) and the expected input resolution of the pre-
trained DNN model be of wD ·hD (with wD the image width
and hD the image hight expected by the DNN). Then, to
preserve optimal image resolution under the constraint of the
DNN input, the hierarchical patching should contain at least
l levels, with l = max (log2 (wi/wD), log2 (hi/hD)). Then,
the smallest patches will just not be downscaled before input,
fitting the requirement of maintained maximal resolution stated
above. Based on these considerations, and as a result of the
chosen image databases (TID2013 [28] and Live-2 [30], see
Section IV) and selected pre-trained DNNs (see Section IV-B),
we use the full images and sub-images with half of each
dimension, i.e. l = 1. For higher input image resolutions, more
levels are required. Besides preservation of input image res-
olution at the smallest patch sizes, this hierarchical approach
ensures a connection between the distorted patches.

We use modified classification DNNs as basis, see Sec-
tion IV for all DNNs, in the following we will use the Xception
network [3] as an example. The modification is that we are
not including the last – classification-oriented – layer (this

is mostly a fully connected layer), and apply an average
pooling strategy on the prev-last layer (it consists mostly of
several identical parallel layers, e.g in case of Xception 5
layers with each 2048 values). Such a classification network
would generate, e.g. in case of the Xception network, 2048
values for each sub-image. Using all theses values would lead
to a huge dimensionality, which is why we apply a simple
summarization of each of the generated prediction values of
the DNN, assuming that the features would be similar in the
sub-images, we therefore get only one vector f containing
2048 values.

The generated feature vector f is sparse, that means it
includes many zeros. Because of that, we created a second
vector f!0, containing only the values that are not zero. As
next, we calculate, for the generated feature vector f and
the non-zero version f!0, the following statistical values as
vector s: mean, sum, standard deviation, skewness, kurtosis,
harmonic mean (only for f!0), geometric mean (only for f!0),
interquartile range and entropy.

These values together with f are a statistical description
of the feature vector and are extended by one value that
is the fraction of zeros in the feature vectors 1 − |f!0|/|f |
as an indicator how sparse the feature vector is. In case
of the Xception [3] DNN we are calculating in sum 2065
values (2048 for f and the remaining values are based on the
statistical values s) for each image.

The total number of our generated features is quite high
in comparison with other state-of-the-art no-reference metrics,
however due to the fact that we use pre-trained DNNs,
we are not able to name and manually select the extracted
features. For this reason, to reduce the overall calculation
and dimensionality, we use automatic feature selection. Our
feature selection step in the overall model pipeline will force
to remove values that are not relevant.

B. Extension of features

Due to the fact that we are not re-training a pure DNN,
we are able to extend our features with state-of-the-art no-
reference values from other models if needed. We will an-
alyze the extension with other features in our Section IV.
We focus on the brisque [23] and niqe [22] features. Both
features are luminance-based and perform combined quite
well, also in comparison to other state-of-the-art models such
as VeNICE [6].

Further, we will use re-trained variants of the additional
NR-models of both feature sets as comparison baseline mod-
els. These re-trained models are based on the same feature-
selection and random forest pipeline that we use for deimeq.
With this re-training, we ensure that the baseline model
performance is the best possible. In this step, also other no-
reference quality/image features could be introduced.

C. Random forest model and feature selection

Our last step consist of a feature selection and training of
a random forest model. The feature selection step uses a Ex-
traTreesRegressor using 0.001 ·mean as threshold for feature



importance selection. For all generated models we use 100
decision trees in our random forest model with mean squared
error (MSE) as split criterion. All other parameters are default
values provided by the used scikit-learn framework [27].

D. Further parameters or algorithms

During the selection process for the final modeling step,
we also evaluated other machine learning algorithms (support
vector regression, gradient boosting trees, . . . ) and model
parameters. Here, the random forest and feature selection step
and settings presented in this paper were found to perform
as best and showed to be the most robust regarding all
analyzed databases. However, our general idea is not restricted
to these algorithmic choices or settings. Other combinations
are suitable and will probably perform with similar results.
deimeq is a meta concept consisting of the idea to use (i) a
pre-trained DNN, (ii) with hierarchical sub-images and (iii)
additional features to predict image quality using machine
learning algorithms. It is also possible to apply such an
approach to other image-related problems that are a focus of
our current and future research.

IV. EVALUATION

To evaluate our proposed method we use
two databases, the Live-2 database [30] and the
Tampere Image Database (TID2013) [28], in a cross-dataset
evaluation approach. Using a cross-database evaluation will
ensure that our provided model is not over-fitting to a specific
database, and additionally it shows that the model is also able
to perform on completely unknown data. Furthermore, for
our deimeq model, we analyze different pre-trained DNNs in
comparison to re-trained no-reference models – brisque and
brisque+niqe. We also check if extending our model with
these no-reference features will lead to a higher prediction
accuracy. As metrics for evaluation of model performance we
use several correlation values (Pearson, Kendall, Spearman)
and the root mean squared error (RMSE).

A. Datasets

Before we evaluate our model, we will describe shortly
the used image quality datasets. For evaluation, we used the
Live-2-database [30] and TID2013 [28]. More image quality
databases are available, e.g. CSIQ[15] or KonIQ-10k[17].
However, they are with lower resolutions, consisting less, only
gray images or focus not on distortion oriented quality.

In our evaluation, we focus on Live-2 and TID2013, because
they include similar distortion types and have approximately
the same number of source images.

In Table I all key properties of both databases are sum-
marized. The Live-2 dataset consists of 29 source images,
in contrast to the 25 images of TID2013. TID2013 includes
approximately 5 times more distortion types, therefore the
total number of distorted images is approximately three times
higher. Both datasets share some similar distortions. The image
resolution for both datasets is relatively small for today’s
image sizes. However, for proving the effectiveness of our

TABLE I
IMAGE QUALITY ASSESSMENT DATASETS

Live-2 TID2013

# source images 29 25
# distortion types 5 24
# total distorted images 779 3000
image resolution (mostly) 768x512 512x384
quality score min/avg/max 0/51.5/100 3.4/62.1/100

image quality modeling approach, the considered databases are
practically useful. In the future, we will extend our evaluation
to further public databases with other distortion types or higher
resolution images once these may become available.

For both datasets we transformed the published quality
scores to the same scale. To this aim, we normalized the
quality scores ([0,100]-DMOS in case of Live-2; [0-10]-MOS
in case of TID2013) to a [0,100]-score using a linear mapping
approach, where 0 is the lowest and 100 is the best quality
score.

B. Performance of deimeq model variants

We analyze different pre-trained DNNs: Xception [3],
VGG16 [32], VGG19 [32], ResNet50 [10], InceptionV3 [34],
InceptionResNetV2 [33] and MobileNet [12]. All used DNNs
are classification networks trained for the ImageNet competi-
tion [29].

Our implementation uses the keras framework [4] for DNNs
and scikit-learn [27] for machine learning models. For the
deimeq model variants and brisque/niqe models we checked
and tuned the number of trees and feature selection (see
Section III-C) of our pipeline. Changes of these parameters
will just lead to minimal performance improvements.

In all experiments we trained on the Live-2 database and
validated with the TID2013 images.

For a detailed analysis we trained several variants and
calculated for each model performance metrics.

Considering Table II, only deimeq variants with Xception,
InceptionV3 or ResNet50 DNNs are able to outperform the
baseline brisque/niqe model variant. All other DNNs are not
suitable in our setup, concluding that they are not reflecting
quality-related features in their layers.

Our best performing model is deimeq+, using the Xception
network in combination with brisque features. The perfor-
mance of deimeq using brisque and niqe features is approxi-
mately the same as for deimeq+. We are able to get an approx-
imately 10% higher Pearson-correlation with our deimeq+
variant. A similar performance boost of the other correlations
and the RMSE can be observed. In contrast, using only the
DNN provided features without extension of no-reference fea-
tures – deimeq*, we are getting an approximately 6% higher
correlation than the individual baseline models. There are also
other models listed with similar performance. For example,
deimeq with InceptionV3 shows similar performance regarding
correlation and error rate.

Furthermore, the performance of the VGG16, VGG19,
InceptionResNetV2 and MobileNet was worse than the base-



TABLE II
PERFORMANCE OF deimeq MODEL VARIANTS AND brisque, P=PEARSON,
K=KENDALL AND S=SPEARMAN CORRELATIONS AND RMSE VALUES;

B=BRISQUE/NIQE AS ADDITIONAL FEATURES; SORTED BY
CORRELATIONS; TRAINED ON LIVE-2 AND VALIDATED WITH TID2013

model used dnn +feat. P K S RMSE

deimeq+ xception B 0.53 0.32 0.47 17.33
deimeq xception B+N 0.53 0.32 0.46 17.04
deimeq inceptionV3 N 0.53 0.28 0.40 15.99
deimeq inceptionV3 B 0.52 0.33 0.47 17.69
deimeq inceptionV3 B+N 0.52 0.31 0.45 17.35
deimeq resnet50 N 0.52 0.30 0.43 16.77
deimeq* xception 0.51 0.27 0.40 19.43
deimeq inceptionV3 0.51 0.27 0.40 16.61
deimeq resnet50 B 0.50 0.32 0.47 17.15
deimeq xception N 0.50 0.27 0.38 17.82
deimeq resnet50 B+N 0.49 0.32 0.47 17.33

brisque 0.48 0.31 0.44 18.92
brisque N 0.48 0.30 0.44 18.48

deimeq vgg19 B+N 0.48 0.30 0.43 17.66
deimeq vgg16 B 0.48 0.29 0.42 18.47
deimeq vgg16 B+N 0.48 0.29 0.42 18.26
deimeq incept-res B+N 0.48 0.27 0.40 18.26
deimeq vgg19 B 0.47 0.30 0.43 18.03
deimeq mobilenet B 0.47 0.30 0.43 17.54
deimeq mobilenet B+N 0.47 0.28 0.41 17.77
deimeq incept-res B 0.46 0.26 0.38 18.50
deimeq resnet50 0.44 0.27 0.40 21.12
deimeq mobilenet N 0.41 0.20 0.30 18.18
deimeq incept-res N 0.41 0.19 0.28 20.23
deimeq vgg19 N 0.38 0.17 0.25 19.60
deimeq vgg16 N 0.36 0.17 0.24 21.02
deimeq vgg19 0.36 0.14 0.21 26.17
deimeq vgg16 0.29 0.13 0.19 26.40
deimeq mobilenet 0.27 0.11 0.16 25.34
deimeq incept-res 0.25 0.11 0.17 24.89

line models. Here, it needs to be considered that the used
DNNs were originally designed for image classification tasks,
a completely different image-analysis problem. Furthermore,
some of the models are optimized for specific applications. For
example, MobileNet was optimized for speed. To allow that
it can be used in mobile applications, the layers are reduced
and the overall model is smaller. Those properties can lead to
a DNN that is usable for the specific problem area that it was
trained for, however the usability as feature extractor for other
applications decreases.

C. Further analysis

As an addition, we further analyzed the performance of
all deimeq variants in comparison with brisque trained on
TID2013 and evaluated on the Live-2 database, deimeq with
Xception (Pearson=0.71, Spearman=0.72, Kendall=0.52) had
similar correlation to brisque (Pearson=0.72, Spearman=0.73,
kendall=0.53). In this setup the brisque model performs quite
good, however it was developed specifically using the Live-
2 database. Similar combinations of DNNs and no-reference
features as in the Live-2-trained approach performed similar
to the brisque baseline model. However, in this setup the
TID2013 dataset contains all distortion types, and Live-2
only a subset, an evaluation regarding the missing distortion
types would be required. We also analyzed the performance
of all of our models in a pure 10-fold cross setup for each
databases, Live-2 and TID2023. Our model and the baseline

model perform well (correlations of more than 0.8). Since
all databases include highly similar images, a 10-fold cross
validation is considered less meaningful in this context.

Another validation considered the LIVE In the Wild Image
Quality Challenge Database [8] (LIVEWILD). This database
consists of crowd-sourcing quality annotated uniqe images
without artifical distortion. A 10-fold cross validation is in this
case not ciritcal, however our general model approach has as
focus different distortion types and levels. In Table III the per-

TABLE III
TOP 10 PERFORMANCE OF deimeq MODEL VARIANTS AND brisque,

P=PEARSON, K=KENDALL AND S=SPEARMAN CORRELATIONS AND
RMSE VALUES; B=BRISQUE/NIQE AS ADDITIONAL FEATURES; SORTED

BY CORRELATIONS; CROSSVALIDATION ON LIVEWILD

model used dnn +feat. P K S RMSE

deimeq+ xception B 0.62 0.42 0.6 14.98
deimeq xception B+N 0.62 0.41 0.59 15.02
deimeq inceptionV3 B+N 0.6 0.4 0.58 15.29
deimeq* xception 0.6 0.4 0.57 15.32

brisque N 0.6 0.39 0.57 15.38
deimeq xception N 0.6 0.4 0.57 15.4
brisque 0.59 0.39 0.56 15.44

deimeq mobilenet B+N 0.59 0.4 0.57 15.43
deimeq inceptionV3 N 0.59 0.39 0.57 15.49
deimeq inceptionV3 B 0.59 0.39 0.57 15.53

formance of the top 10 models are summarized. Best perform-
ing deimeq variant is again deimeq+, and vairants with Xcep-
tion DNN. Xception and InceptionV3 are the most suitable
DNNs for this database. Furthermore, the brisque/brisque+niqe
baseline model performance is comparable with deimeq.

In general, we found out that our approach can successfully
be used with several image classification DNNs, 3 out of 7
DNNs were suitable regarding overall prediction performance.
Further, such a model, without using additional no-reference
features, is able to outperform state-of-the-art models in a
cross-dataset evaluation approach. We use this “hard” evalu-
ation approach with between-database training and validation
to show how well such a model can perform and to ensure that
the models are not over-trained for a specific image database
with specific distortion types.

Lastly, using some state-of-the-art no-reference features will
further improve, in mostly all cases, the overall performance
of a successful deimeq+DNN approach.

V. CONCLUSION

First, we checked the current state-of-the-art no-reference
image and video quality models and identified the following
key issues and research questions. First, most well performing
models use hand-crafted features in combination with machine
learning to aggregate a final score. Second, other state-of-
the-art models use deep neural networks with local patching
and final score aggregation. Furthermore, training and tuning
a DNN can be a complex task, due to the fact that huge
datasets are required and that a pure patching will loose a
global connection of distortions.



We introduce a hybrid model, called deimeq, that uses a pre-
trained classification DNN as feature extractor in combination
with hierarchical sub-images. Our generated features were
combined, summarized and optionally extended by state-of-
the-art no-reference values. For final score estimation deimeq
uses a random forest model with a previously applied feature
selection step.

In several analysis runs we analyzed which DNNs are
suitable with hierarchical sub-images for quality estimation
and combined the extracted DNN features with state-of-the-
art no-reference features. We found out that only 3 out
of 7 pre-trained DNNs can be used successfully as feature
extractor for image quality problems; the best performing
DNN was Xception. Our feature extension approach showed
that, for example using Xception, such DNNs can be used
in combination with brisque features to boost overall model
performance. We showed that our deimeq approach without
no-reference features is also able to out-perform current state-
of-the-art and re-trained no-reference models in a hard cross-
dataset evaluation approach.

Further research work should validate our provided ap-
proach for image quality assessment databases with higher
resolutions and a more diverse image set including for example
image liking aspects. For such datasets, our model can easily
be extended by some state-of-the-art image aesthetic features.
It is also possible to extend our deimeq idea to a full-reference
system. However, no-reference models are more interesting,
because a reference is not provided in most real-world image-
quality assessment scenarios.
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