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— introduce: a framework for QoE analysis of encrypted video streams
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» today usage of efficient HTTP-based adaptive streaming (HAS) [5, 6]

» using QoE models — quality can be predicted, e.g., ITU-T Rec.
P.1203 (model for HAS quality estimation) [1, 3]

» in HTTPS scenarios: encryption — hard to access bitstream and
additional data required by typical QoE models

» current research: machine learning to estimate video quality for
encrypted stream using [4]
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Our Approach (1)

» network traffic shaping for
simulating different network
conditions

» man-in-the-middle proxy

» automated active video probing,
controlling
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Our Approach (2)

» store encrypted network traffic
» store decrypted network data
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Our Approach (2)

» store encrypted network traffic
» store decrypted network data

» analyze and re-assemble what
a user would have watched

» apply quality model to estimate

MOS values
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» three different YouTube videos

o with first (short; 55 s), second (medium; 121 s), and third (long; 331 s)

» various traffic shaping conditions

o dsl 2, 6, 25 Mbit/s

» for each video and traffic setting perform 32 runs

o interleaved approach, to measure man-in-the-middle influence
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Experimental Evaluation and Validation (2)
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each run:

» measurement with proxy (prx) and without (wop)
» measure video parameter of wop setting
o player load time, startup delay, average stalling duration,

o stalling events, quality events, ...

» calculate mean differences of all runs (mean(wop) - mean(prx))
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Experimental Evaluation and Validation

mean differences [ms], wop - prx

video dsl avg player  startup
[bit/s] stalling load time delay
first (55s) 2M 8473* -620 8507*
6M -536 -742 -534
25M -472 -749 -486
second (121s) 2M 9784* -463 8669*
6M -322 -637 -329
25M -788 -651 -785
third (331's) 2M -800 -447 -715
6M -851 -595 -855
25M -902 -651 -908

» identified some outliers (*)
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» observe near constant offset [0.5;1]s — influence is approx constant

dataset: https://github.com/Telecommunication-Telemedia-Assessment/mitmprobe_validation_dataset
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Conclusion Future Work

» automated framework for » extending our system to a
building up datasets of distributed measurement tool;
encrypted video streams collect large datasets

» collect several important data » more in-depth analyses of the
for QoE analysis collected data

» approx constant influence of » extend active probing with
man-in-the-middle proxy for simulation of real user
video quality interactions
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» dsl 2M: incoming rate 2000k, outgoing rate 200k, 30ms delay
» dsl 6M: incoming rate 6000k, outgoing rate 600k, 30ms delay

» dsl 25M: incoming rate 25000k, outgoing rate 5000k, 30ms delay
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