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Motivation

I video streaming ≥ 70% of internet traffic [2]

I increasing traffic volume by new technologies

I encrypted transportation via HTTPS [7]

I hard to estimate video quality

→ introduce: a framework for QoE analysis of encrypted video streams
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General

I today usage of efficient HTTP-based adaptive streaming (HAS) [5, 6]

I using QoE models→ quality can be predicted, e.g., ITU-T Rec.
P.1203 (model for HAS quality estimation) [1, 3]

I in HTTPS scenarios: encryption→ hard to access bitstream and
additional data required by typical QoE models

I current research: machine learning to estimate video quality for
encrypted stream using [4]
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Our Approach (1)

I network traffic shaping for
simulating different network
conditions

I man-in-the-middle proxy

I automated active video probing,
controlling
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Our Approach (2)

I store encrypted network traffic

I store decrypted network data

I analyze and re-assemble what
a user would have watched

I apply quality model to estimate
MOS values
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Experimental Evaluation and Validation (1)

How much influence has the man-in-the-middle proxy to video quality?

I three different YouTube videos

◦ with first (short; 55 s), second (medium; 121 s), and third (long; 331 s)

I various traffic shaping conditions

◦ dsl 2, 6, 25 Mbit/s

I for each video and traffic setting perform 32 runs

◦ interleaved approach, to measure man-in-the-middle influence
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Experimental Evaluation and Validation (2)

each run:

I measurement with proxy (prx) and without (wop)

I measure video parameter of wop setting

◦ player load time, startup delay, average stalling duration,

◦ stalling events, quality events, . . .

I calculate mean differences of all runs (mean(wop) - mean(prx))
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Experimental Evaluation and Validation
mean differences [ms], wop - prx

video dsl avg player startup
[bit/s] stalling load time delay

first (55 s) 2 M 8473∗ -620 8507∗

6 M -536 -742 -534
25 M -472 -749 -486

second (121 s) 2 M 9784∗ -463 8669∗

6 M -322 -637 -329
25 M -788 -651 -785

third (331 s) 2 M -800 -447 -715
6 M -851 -595 -855
25 M -902 -651 -908

I identified some outliers (∗)

I observe near constant offset [0.5;1]s→ influence is approx constant

dataset: https://github.com/Telecommunication-Telemedia-Assessment/mitmprobe_validation_dataset
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Conclusion and Future Work

Conclusion
I automated framework for

building up datasets of
encrypted video streams

I collect several important data
for QoE analysis

I approx constant influence of
man-in-the-middle proxy for
video quality

Future Work
I extending our system to a

distributed measurement tool;
collect large datasets

I more in-depth analyses of the
collected data

I extend active probing with
simulation of real user
interactions
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Thank you

. . . . . . are there any questions?
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Stream assembling

Reconstruction of what a user was watching
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DSL Settings

I dsl 2M: incoming rate 2000k, outgoing rate 200k, 30ms delay

I dsl 6M: incoming rate 6000k, outgoing rate 600k, 30ms delay

I dsl 25M: incoming rate 25000k, outgoing rate 5000k, 30ms delay
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