
A Framework for QoE Analysis of Encrypted Video
Streams

Steve Göring∗ Alexander Raake∗ Bernhard Feiten†
∗Audiovisual Technology Group, Technische Universität Ilmenau, Germany;

Email: [steve.goering, alexander.raake]@tu-ilmenau.de
†Deutsche Telekom AG, Technology & Innovation, Germany; Email: bernhard.feiten@telekom.de

Abstract—Today most internet traffic is generated by video
streaming. YouTube and other video streaming platforms are
using encrypted streams (HTTPS) for transport of video content.
Encryption will lead to more requirements on network and
content providers, e.g. caching mechanisms will not work direct.
Estimation of video quality for measuring users satisfaction
is also harder because there is no direct access to the video
bitstream. We are building up a framework for analyzing video
quality that allows us to store client information, decrypted
network traffic and encrypted messages. Our approach is based
on a man-in-the-middle proxy for storing the decrypted video
bitstream, active probing and traffic shaping. Using these data,
we are able to calculate video QoE values for example using
a model such as ITU-T Rec. P.1203. Our framework will be
used for generating datasets for encrypted video stream analysis,
analyzing internal behavior of video streaming platforms, and
more. For experimental evaluation, in this paper we analyze the
influence of our man-in-the-middle proxy on key-performance
indicators (KPIs) for video streaming quality.

I. INTRODUCTION

YouTube, Vimeo, Netflix and Amazon Prime are well
known video portals. Traditional broadcast television is more
and more complemented and replaced by such video on
demand platforms. Today about 70% of the internet traffic
is generated by video streaming [2, p 14]. Technologies like
4k resolution, high framerate and HDR, will increase the
traffic volume rapidly. Most of all popular video streaming
providers are using variants of HTTP-based adaptive streaming
(HAS) to deliver their video content, for reducing overhead
and increasing performance [5]. Efficiency of YouTube’s HAS
was already analyzed [6]. For security or privacy reasons
the content is, in most cases, transported encrypted using
HTTPS [7]. Automatic estimation of video quality in such
an encrypted scenario is not directly possible, because a good
estimation requires access to the video bitstream. In this paper
we describe a framework for automated analysis of video
stream quality based on client-side and network measurements
combined with bitstream analysis and ITU-T Rec. P.1203
(model for HAS quality estimation) [1, 3]. For accessing
the video bitstream we built a system using a man-in-the-
middle proxy and client-side automated active video probing
and controlling. In addition, we add network traffic shaping
for simulating different network conditions in our experiments
conducted in a fast university network. Furthermore, using net-
work shaping, our results are reproducible without considering

changes in the way how the streaming platform delivers the
video. All required decrypted network data was stored based
on our proxy, enabling to analyze what a user would have
watched, after assembling the video segments into separate
video streams. Our active video probing approach is able to
collect several data, e.g. stalling events, stalling duration and
startup delay. Combining these collected data we can apply
a video quality model such as P.1203, allowing to estimate
MOS values of the played video. Orsolic et al. are analyzing
encrypted video streams using machine learning and statistical
calculations based on the encrypted stream [4]. Compared to
our approach we are able to collect decrypted (bitstream)
information, encrypted streams and meta information of a
video. Our collected and generated data can be used for
training and building up a database to analyze encrypted video
streams. In this paper we use our framework for a small
example evaluation. The database used for the experiments
for this paper are made public available1. To evaluate the
approach itself, we will measure to which extent the man-in-
the-middle approach influences video performance compared
to measurements without a proxy. Our framework is just a
starting point for more automated video quality estimation and
further analysis of encrypted video streams.

II. OUR APPROACH

Fig. 1. Framework for measuring encrypted video streams; beside encrypted
network traffic we also collect active probing results, video segment files and
decrypted traffic.

Our approach can be divided into several steps, compare
Fig. 1. First, we need a given video url (e.g. YouTube) and
a set of network settings used during traffic shaping. For
one measurement run, the man-in-the-middle proxy, a web
browser session (we use google-chrome), encrypted network
traffic recording, meta data extraction and our active probing
script were started in parallel. The active probing step can be

1https://github.com/Telecommunication-Telemedia-Assessment/
mitmprobe_validation_datasetQoMEX2017 – Erfurt, Germany; 978-1-5386-4024-1/17/$31.00 c©2017 IEEE

replaced by simulated user’s behavior or a real user interaction
transparently. After the selected video has completed playing,
all data from the client side is stored (player load time, startup
delay, video duration, average stalling duration, stalling events,
quality events), and the analysis of the recorded man-in-the-
middle dump is launched. Our analysis step assembles all
segments into different video stream files and aggregates all
stored and required video properties for the quality model.

Fig. 2. Example of assembling a video stream; three different quality switches
occur during video play-out and reassemble video files for our analysis.

Fig. 2 shows how different video segments are assembled.
Assuming that each segment has a correct timestamp and that
the current quality level is the most recent one, we assemble
all segments to different video quality streams. For example,
for a session starting from 360p, going to 1080p, and finally to
720p we will extract three different video stream files that have
corrected starting, end times and no video overlap. We will not
analyze additionally transfered segments, even though they are
stored in our dump-files. A later analysis of those transferred
segments can be done in a subsequent experiment, see e.g.[6].

After assembly, we are able to use all collected data as input
for the P.1203 video model (each mode–0 to 3 can be used).
The resulting MOS values for the overall session, per-second
audio- and video MOS-scores and diagnostic KPI information
can be stored in our video-quality report.

III. EXPERIMENTAL EVALUATION

In the experiment presented here we analyze the influence of
our man-in-the-middle-proxy pipeline on video play-out. We
performed running measurements with and without proxy and
compared based on the information collected at client side.
Due to the fact that we compare with measurements without
proxy, only quality-scores according to P.1203 mode 0 can
be calculated. As input, P.1203 Mode 0 uses stalling, bitrate,
codec and framerate. If these model input-parameters are in
agreement between the cases with and without proxy, it can
be assumed that there is no impact of the measurement on
the results, and MOS-estimates will agree as well. Hence, in
the validation presented here, we only focus on player load
time, startup delay and average stalling duration. We analyzed
three different YouTube videos of short (55s), medium (121s),
and long duration (331s). In experiment, even longer videos
are not suitable because YouTube’s behavior and our emulated
network conditions have distinct temporal characteristics. Our
measurements were collected in the following way. First, we
applied traffic shaping (simulation of dsl 2, 6, 25 Mbit/s param-
eters). Secondly we start measuring using our proxy. We store
all results and then re-run without proxy. For each network

condition and video we repeated this approach 32 times and
calculated average values. As an example, player load time,

i-th measurement
0

2000

4000

6000

8000

10000

ti
m

e
 [

m
s]

video (first), dsl6M, player_load_time startup_delay average_stalling_duration

player_load_time

startup_delay

average_stalling_duration

woP_player_load_time

woP_startup_delay

woP_average_stalling_duration

Fig. 3. 32 measurements; first video (55s); dsl 2 Mbit/s; notably are fluctua-
tions during measurement period.

startup delay, average stalling duration of 32 measurements for
our first video using dsl 2 Mbit/s parameter were presented in
Fig. 3. There is an approximately constant offset in player load
time between using our proxy prx and without proxy wop.
The offset for all other measurements is not clearly constant
and considering Fig. 3 measurement values are fluctuating
in time. Hence, we also calculated mean difference (wop -
prx) values for all experiments to get an better overview.
Table I shows all mean differences of all experiment runs.

TABLE I
MEAN DIFFERENCES [MS] OF ALL EXPERIMENTS, WOP - PRX

video dsl [bit/s] avg stalling player load time startup delay

first (55 s) 2 M 8473 -620 8507
6 M -536 -742 -534
25 M -472 -749 -486

second (121 s) 2 M 9784 -463 8669
6 M -322 -637 -329
25 M -788 -651 -785

third (331 s) 2 M -800 -447 -715
6 M -851 -595 -855
25 M -902 -651 -908

The player load time is nearly constant for every experiment.
Startup delay and average stalling duration is different only for
2 exceptions, otherwise approximately constant. E.g, periods
of additional congestion in our university network may explain
this. Inter-measurement differences can be explained based on
the fact that our interleaved measurement approach is not op-
timal because conditions can change after some seconds. The
experiment represents a first approach for evaluating our man-
in-the-middle-proxy pipeline. A more extensive evaluation will
be performed in a future lab test where we run in an isolated
environment to control all influences.

IV. CONCLUSION AND FUTURE WORK

We introduced an automated framework for collecting en-
crypted video stream data to apply quality models that are
based on decrypted bitstreams. Furthermore, we evaluated our
approach in a small experiment, indicating that only a constant
offset is created using the man-in-the-middle-proxy. Future
work will be about extending our system to a distributed
measurement tool, and building up a database for encrypted
stream analysis. Additionally, we plan to run more in-depth
analyses of the collected data.

V. REFERENCES

[1] Alexander Raake, Marie-Neige Garcia, Werner Robitza,
Peter List, Steve Göring and Bernhard Feiten. “Scalable
Video Quality Model for ITU-T P.1203 (aka P.NATS) for
Bitstream-based Monitoring of HTTP Adaptive Stream-
ing”. In: QoMEX 2017. to appear. IEEE. 2017.

[2] Cisco. Whitepaper: Cisco Visual Networking In-
dex:Forecast and Methodology, 2015-2020. 2015.

[3] ITU-T. Recommendation P.1203 - Parametric bitstream-
based quality assessment of progressive download and
adaptive audiovisual streaming services over reliable
transport. Tech. rep. International Telecommunication
Union, 2016.

[4] Irena Orsolic et al. “YouTube QoE Estimation Based
on the Analysis of Encrypted Network Traffic Using
Machine Learning”. In: Globecom Works. IEEE. 2016,
pp. 1–6.

[5] Michael Seufert et al. “A survey on quality of experience
of HTTP adaptive streaming”. In: IEEE Communications
Surveys & Tutorials 17.1 (2015), pp. 469–492.

[6] Christian Sieber et al. “Sacrificing efficiency for quality
of experience: YouTube’s redundant traffic behavior”. In:
IFIP Networking. IEEE. 2016, pp. 503–511.

[7] YouTube’s road to HTTPS. https : / / youtube - eng .
googleblog.com/2016/08/youtubes- road- to-https.html.
Accessed: 2017-02-25.

