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Abstract—The challenge of bringing more intelligence to the
infrastructure of modern cities requires a change of thinking
and states a demand for new algorithms and strategies. One
important outcome of those algorithms is a realtime estimation of
the prevalent spatio-temporal conditions of public transportation
networks by making use of distributed image processing on
networked smart camera systems. This paper provides a detailed
analysis of two exemplary networked applications that can
use the derived data. A conducted simulation study based on
the infrastructure of real cities shows the potential of using
autonomously generated knowledge, that smart camera systems
can provide. Especially, inter-camera object tracking, as well as
adaptive and smart navigation tasks can benefit considerably
and substantiate the need for autonomous and confidential image
processing.

I. INTRODUCTION

In recent years, a series of efforts are undertaken in order
to bring more intelligence to the public infrastructure of big
cities to solve essential problems like public security, smart
navigation or traffic management [1], [2], [3]. The city of
New York just spent 40 million dollars for a super computer
system developed by Microsoft, in order to analyze the output
of thousands of surveillance camera systems [4]. A common
approach for this is to capture all the camera systems that are
mounted at the most frequented and important transportation
hubs, and perform an offline analysis of the recorded video
material by security personnel in case of an incident. Nev-
ertheless, this is a rather trivial approach because realtime
live surveillance by humans is not only very expensive but
also not feasible for really large scenarios with thousands of
cameras. Furthermore, the aggregation of surveillance data at
a distinct point in the network creates a single point of failure
(SPoF), and raises serious privacy concerns, e.g., attackers
would have a well known target to concentrate on and unau-
thorized persons could potentially get access to all surveillance
data at one central point. Additionally, this approach requires
an enormous amount of network bandwidth and processing
power, concerning the steadily improving camera sensors and
image resolutions.

In the course of the general trends in decreasing prices and
increasing processing power of miniaturized and integrated
devices, new forms of Distributed Smart Cameras (DSCs) have
been developed over the last years that allow for distributed
analysis of video material on the spot and enable to avoid
the expensive transport of raw camera data. Additionally, a
meanwhile cheap and ubiquitous networking enables the setup

of a connected camera infrastructure in order to exchange
pre-processed data (e.g., characteristic fingerprints of faces,
etc.). The idea is to use this infrastructure for innovative
applications, e.g., the tracing of criminal acts, or navigation
tasks that are adapted to the actual traffic conditions of the
system. Figure 1 illustrates a basic task in distributed image
processing: The estimation of traffic flows in urban scenarios
without any further requirements to the camera systems, like
a shared field of view, calibrated devices, or special training
procedures. Even the available bandwidth for communication
can be very low, because DSCs are assumed to exchange only
anonymized metadata about the locally analyzed events.

derived logical topology map

detected object movements

Fig. 1. Smart camera nodes estimate a logical topology map based on
monitored object transitions and distributed vision algorithms. Therefore, no
video material has to be transmitted, and communication overhead can be
saved.

Upcoming strategies for distributed image processing ad-
dress the basic problem of topology estimation [5], [6], [7],
and raise the question of how much networked applications
can benefit from the derived information. Therefore, this paper
provides an outline and a detailed analysis of two exemplary
networked applications that can use the derived data. On the
one hand, the problem of inter-camera object tracking in highly
diverse scenarios and without any further knowledge about the
underlying camera setup is investigated. On the other hand,
a new approach of smart navigation in public transportation
networks is introduced that exclusively uses networked smart
cameras and anonymized image processing as a source of
information. Both applications provide the background for
a following requirement analysis that states the main non-
functional objectives for DSC systems.

A conducted simulation study based on the infrastructural
properties of real cities shall reveal the potential of using
autonomously generated knowledge that smart camera systems



can provide, in contrast to common approaches with limited
and rather static knowledge. Therefore, traffic networks of a
variety of big cities are analyzed and used as input for simula-
tion tasks and the generation of synthetic simulation topologies
following the extracted metrics [8]. The implementation of the
described applications is kept simple and concentrates on basic
algorithms in order to provide a generic model for further
research in the field of distributed and networked applications
in the context of smart cities and image processing.

II. ILLUSTRATIVE APPLICATIONS

The following section provides two demonstrative applica-
tions that can profit from an autonomous and distributed image
processing, directly on the smart camera devices. Of course, a
centralized processing of images on dedicated servers can pro-
vide the same output, but requires a lot more communication
bandwidth and creates bottlenecks as well as privacy issues,
concerning the aggregation of intimate surveillance data (see
Section III-A).

A. Inter-Camera Object Tracking

The main scope of object tracking between autonomously
operating camera nodes is to identify certain trajectories of
moving objects while keeping the efforts for communication
and processing power at a minimum. This can be done by
continuously identifying spatio-temporal relationships between
those nodes in advance, and use this topological knowledge
to save resources afterwards. A detailed and mathematical
formulation of how the topology information is derived in
realtime is given in [7].

A rather static scenario arises if only the geographical
coordinates of all camera nodes are known without any further
information about paths or means of transportation. Objects
of interest that have been recognized at time t at a certain
node in the scenario are assumed to have a maximum motion
speed. That means they can reside anywhere in the surrounding
of that node, with steadily increasing radius r over time
t+∆t (see Fig. 2). The growing geographical area is therefore
illustrated as concentric circles with the object’s origin as
centre.

Due to the fact that none of the nodes has the information
about potential trajectories in the scenario, all nodes within the
reachable area must be monitored to recognize the object of
interest (see Fig. 2). Nevertheless, without this geographical
knowledge, all existing nodes in the system would have to
be monitored. This approach for shrinking the search space
is therefore expected to work, but requires a manual setup of
coordinates or special GPS functionality on each participating
system.

Thus, an adaptive and autonomous algorithm that estimates
the actual traffic flow conditions without any prior information
about location and neighborhood is expected to outperform the
location-based approach. Figure 3 depicts the same scenario
but now with the previously estimated spatio-temporal rela-
tionships between camera nodes. Based on that information,
some of the former interesting nodes can be excluded from the

r (t + ∆t)

Fig. 2. An object (e.g., a suspicious person) shall be located by distributed
cameras, after it has been identified at a single point in the network, a certain
amount of time ∆t before. The main challenge: Limiting the search effort to
some few camera nodes. If the geographical position of every single camera
node is known, the search radius r(t + ∆t) must be extended based on a
constant moving speed of the object.

set of relevant and reachable nodes and thus, the search space
can be limited even more because only a subset of paths is
avaiable for the object’s movement through the surrounding.

r (t + ∆t)

Fig. 3. Even without any knowledge about positions or distances of nodes,
a logical topology based on estimated transition times can support search
algorithms by limiting the number of plausible destinations and paths.

B. Smart Navigation

Another important task in modern cities is smart and
adaptive navigation that takes into account the actual traffic



conditions, like congestion, road works, or rush hours with
long waits. Depending on the time of the day, there may
be alternative routes in the transportation networks or on
the streets, that finally lead to a shorter overall travel time,
although the distance increases (see Fig. 4). This is a plausible
fact for any person that ever used transportation networks
during rush hours, but it is hard to predict or to analyze such
situations in realtime and without computational intelligence.

?

Fig. 4. Smart and adaptive navigation if the former shortest path is no longer
available or heavily congested.

In order to realize an adaptive navigation application, the
knowledge about transition times between particular stations is
essential. Of course, even with overcrowded stations, the metro
transit times are quite constant (according to the schedule), but
it takes much longer for a person to reach the stop and get on
the trains. And this is actually the interesting Problem: How
long does it take for the passengers to move between different
stations?

III. OBJECTIVES FOR DISTRIBUTED IMAGE PROCESSING

Besides the functional requirements for distributed and
autonomous processing of video material, there are some main
and yet important non-functional requirements that have to
be fulfilled. Future distributed networked applications must
be designed with respect to these objectives, in order to be
applicable in growing public environments.

A. Privacy

Probably the most important point when camera systems
should be applied in public areas is the privacy aspect.
Administrative instances have to follow very strong guidelines
whenever intimate and private data, such as camera images, is
recorded or transmitted over communication networks. That is
because of the potential presence of electronical eavesdropping

operations at any readily accessible and thus vulnerable point
in the infrastructure. Image processing on centralized systems
is a comparatively simple approach, and once compromized,
an enormous amount of aggregated data is accessible for
unauthorized people. Additionally, also security personnel
should not be able to get access to any kind of recorded
material, unless it is really necessary. An innovative approach
should therefore provide the possibility of preprocessing the
private data and use anonymized metadata in combination with
intelligent algorithms instead. Furthermore, smart algorithms
that try to extract useful information about the monitored
scenarios can overcome the paradigm of saving all the binary
image data for later analysis.

B. Scalability

With an actual size of thousands of cameras mounted almost
everywhere in big cities, scalability problems will arise with
steadily increasing image resolutions in combination with
networked data transport. Although data rates can be reduced
drastically by distributed preprocessing of images, another
class of problems arises without centralized coordination and
management functions. DSCs will have to communicate on
a peer-to-peer basis and work autonomously to derive infras-
tructural behavior. Therefore, such a system can be seen as
scalable concerning the number of nodes, if it is guaranteed
that there are enough resources available to communicate over
the transport network and to process all gathered information
in real time. A smart communication overlay can support
location awareness and reduce the required communication
bandwidth [7].

C. Adaptivity/Agility

Due to the continuous evolution of traffic situations, e.g.,
because of congestion, road works, or special events, the whole
public transportation infrastructure can be seen as a dynamic
system. Special training phases or unique training objects for
camera calibration must be disregarded as a consequence. In
order to use infrastructural information for smart applications,
the estimation of traffic flows and transit times should be up-
to-date at any time. Hence, collaborative image processing
over communication networks must be realized with realtime
capabilities to support smart features.

D. Robustness and Precision

With increasing distributed processing power, also object
recognition and tracking algorithms improve steadily. But
there still exists the fundamental challenge of classifying
complex objects in a diverse environment, like people in public
places. The main problems that arise are “False Negative”
object detections because of coverage or perspective issues on
the one hand, and “False Positive” recognized objects because
of the limited size of feature descriptors and mis-recognition
on the other hand. Since algorithms for autonomous image
processing are computed in a distributed fashion, they should
be robust against corrupted or distorted input data [9]. In this
respect, the most important component is the computer vision



part that provides information about detected and classified
objects in video material. As an example, with more than
10.000 people moving in a public transportation system simul-
taneously, object tracking and object recognition algorithms
still are stretched to their limits. This would inevitably result
in high error rates and influence the functioning of further
applications.

Conclusion

The main target to enable autonomous processing of video
material on distributed devices, is to build up a smart com-
munication overlay that takes into account the actual know-
ledge about traffic flows. But the logical relationship between
distributed instances often differs from geographical circum-
stances. Applications for smart navigation or inter-camera
object tracking are assumed to benefit from information about
the logical topology of smart camera nodes and the traffic
flows between them.

IV. EVALUATION

In order to evaluate the advantage of spatio-temporal topo-
logy knowledge, we extracted some real traffic networks of
different cities based on the free datasets of OpenStreetMap
(OSM) [10] in the first place. We chose big cities from
different countries to get a representative sample. Afterwards,
the cities’ XML files are analyzed, and corrected with respect
to the public transportation networks (stations, stops, routes,
etc.). This extraction process consists of the following steps.
First, the relations of the XML files are parsed and filtered,
because only light rail and subway information is needed,
especially the stations. Based on this results, the needed paths
and nodes (with GPS positions) are selected. The resulting
graph contains all GPS measurements and routes. In order to
clean this data and reduce the number of additional waypoints,
the GPS graph is generalized as a routing graph where every
station is a node for routing. To get the egdes/weights between
the routing nodes, an algorithm for finding shortest paths
(e.g., Dijkstra) is applied on the GPS graph. Furthermore,
overlapping stations (e.g., OSM tagging failures or parallel
tracks) are merged and the largest connected component of the
graph is extracted. Then the resulting graphs of all cities were
analyzed concerning average node degree and clustering co-
efficient. Table I shows the calculated outcome for a selection
of nine cities. As expected, the (global) clustering coefficients
for all cities were very low, because the establishment of
clusters in a transportation network is not economic and
indicates high redundancies of transport routes within a small
geographical area. The more interesting metric is given with
the average vertex degree for the particular cities. It seems that
transportation networks of big cities have similar properties,
even if the absolute size (points of interest) is very different
[8].

Based on these numbers and some other, minor important
details (e.g., the geographical density of nodes), we can
generate synthetic topologies that have the same characteristics
as the evaluated cities. A following simulation environment,

TABLE I
EVALUATION OF REAL OSM-DATA (LIGHT RAIL AND SUBWAY

TRANSPORTATION NETWORK)

City Points of Edges Vertex degree Clustering

Interest min max avg coefficient

Berlin 376 983 1 7 2.61 0.14

Paris 314 763 1 12 2.43 0.04

New-York 219 603 1 13 2.75 0.10

Shanghai 210 452 1 5 2.15 0.02

Frankfurt 208 526 1 11 2.53 0.10

Moscow 161 352 1 4 2.19 0.01

Barcelona 140 305 1 5 2.18 0.00

Rome 75 152 1 4 2.03 0.02

London 54 125 1 8 2.31 0.15

based on the OMNeT++ Framework [11], can provide any
number of random topologies in order to get statistically
significant results and reliable statements.

A. Inter-Camera Object Tracking

The first application is based on the scenario described in
section II-A. The core idea is to find the number of nodes
an object can reach while starting from a node s within
a certain time window ∆t. Initially, to evaluate the given
situation we need at least the number n(s,∆t) from a set
of camera nodes V an object can reach when starting at node
s, an amount of time ∆t before. Considering that every node
can be the starting point, it is necessary to do an evaluation
without a special node s. So we define n(∆t) the average
number of possible target nodes for the tracked object as

n(∆t) =
1

|V |
∑
s∈V

n(s,∆t).

Apparently, n(∆t) is in the interval [0, |V |], but to compare
different topologies we need to scale it to the uniform interval
[0, 1] and define it as n(∆t).

Now we can differentiate between two basic approaches.
The first does not use any topological knowledge and is just
based on the geographical information of every node. The
calculation of n(s,∆t) is a simple distance lookup of which
nodes are reachable in the radius r(t) = v · t where v is
the assumed object speed. The second approach uses the
estimated spatio-temporal topology properties and calculates
n(s,∆t) with a truncated breadth-first search (tBFS). During
the insertion phase, the tBFS ignores nodes that are not
reachable in the time window ∆t. The reachability is then
calculated based on the topology knowledge, especially the
observed time to reach a neighboring node.

The fundamental simulation uses a synthetically generated
set of topologies of city terrains with 10 × 10 km2. Objects
move with a variable moving speed of v : N(µ = 1.5m

s , σ =
0.3m

s ). Supposing a person moves from one corner to the
opposite corner of the city region with a speed of v = 1.5m

s ,
the needed time is t = 10·

√
2·103

1.5 s ≈ 157 minutes. We



calculated n(t) in equidistant steps of 5 minutes with the two
introduced methods. All measures are calculated means over
32 runs and additionally with 99% confidence intervals. The
used topologies consist of 500 nodes with an average node
degree of 2.521 and σ(99%) = 0.011.

Figure 5 shows the measured n(∆t) values for all ∆t
starting from 0 to 100 minutes. First of all, the “Geographical
Knowledge” series evaluates the approach based on geograph-
ical distances without any topology knowledge. E.g., at time
∆t = 50 minutes the search space is approximately 80% of all
nodes. On the other hand, the “Topology Knowledge” series
shows a remaining search space of less than 55% of nodes.
It uses the tBFS approach in combination with a shortest
path metric, because in this scenario only the paths between
nodes are known, but not the spatio-temporal relationship.
The “Topology Knowledge (timed)” series considers delays
or heavily congested paths, realized by modified distances
between two congested nodes based on an exponential dis-
tribution with Exp(λ = 1.0). This distribution was chosen
because it ensures the similarity to the unmodified topology
concerning the average path lengths. Summarizing, the global
view of all three series shows that the search space increases
slower for the topology based approaches, because only the
previously identified paths are available for the object of
interest. Furthermore, all series apply to the fact that in time
∆t > 100 minutes, all nodes are potentially reachable for
all of the implemented strategies. Additionally, we claim that
the topology knowledge is quite useful for the search-task
scenario. For all cases, topology knowledge could speed up
the search algorithms, and in the best case with approximately
20%. Just for search scenarios during the first few minutes, the
geographical approach is able to compete with the topology
based ones.

B. Adaptive/Smart Navigation

In section II-B the second application was introduced.
The general problem of adaptive/smart navigation is the well
known shortest path problem of finding the best route from a
given starting point to any destination. But for the simulative
evaluation we have to solve the all pairs shortest path (APSP)
problem, e.g., with the algorithm from Bellman and Ford,
because every node could be the starting point. As input, at
least the topology graph G = (V,E) and a cost matrix c[u, v]
based on geographical distances are needed. An algorithm
for the APSP problem returns a distance matrix d(u, v) that
holds the costs for the shortest path from node u to node v.
Subsequently, we define d the average costs for all paths as

d =
1

|V |2
∑
v∈V

∑
u∈V

d(u, v).

In order to compare different topologies, we need to scale the d
values to the interval [0, 1] and define it as d. For an evaluation
of the adaptive navigation, two kinds of topologies were used.
The first one uses static distances based on geographical
information comparable to a situation with no information
about congestion or traffic disruption, but with well known
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a synthetically generated set of topologies (10x10 km2), mean over 32 runs.

neighborhood relationships (see “Topology Knowledge” mea-
surements). The second one uses modified distances between
two congested nodes based on an exponential distribution with
Exp(λ = 1.0), identical to the “Topology Knowledge (timed)”
experiment that was introduced in the last section.

For the following simulation study, both topologies – the
static ones and the dynamically congested – have been gen-
erated and the d values were calculated. Of course, the
simulated results for d are graph dependent and a represen-
tative number of experiments had to be made in order to
reach statistical certainty. One basic adjustable property of the
synthetic topologies is the average node degree. Referring to
the OSM Table I, typical cities have an average node degree
in the interval [2, 3]. Notice the fact that crossroads usually
consists of 4–5 roads the interval can be extended to [2, 5]
if streets are taken into account. We measured the d values
for graphs with an average node degree starting from 2.2 to
5.8 with equidistant steps of 0.4 for the two different types
of topologies. All measurements are calculated means over 32
runs with 99% confidence intervals on synthetically generated
topologies with 500 nodes. Therefore it was not possible to use
real cities’ topologies, because the average node degree would
be fixed and not adjustable for statistical evaluation runs.

Figure 6 shows the average navigation costs depending
on the average node degree of the evaluated topologies. For
higher node degrees, there are more “backup paths” with a
growing number of disjoint paths in the topology. The adaptive
navigation algorithm has the ability to discover and use those
additional paths in the case of congestion (cf., Fig. 4). In a city
with an average node degree of 2.6 (e.g., Berlin) the paths for
geographical navigation have costs of about 0.4 in contrast to



≈ 0.3 with the adaptive version. For real world scenarios the
measured values in the interval [2, 3] are important. Generally,
the adaptive shortest path algorithm outperformes the static
one and saves approximately 20% of costs.
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Summarizing, we showed that navigation can benefit from
collected topology knowledge, because in all samples the
adaptive navigation could save approximately 10% – 60% of
costs. The static navigation approach should only be used in
cases where no congestion occurs.

V. CONCLUSION AND FUTURE WORK

In this article, a new deployment scenario for distributed im-
age processing was discussed. Two demonstrative applications
are presented and motivated in the context of smart navigation
and public surveillance. An analysis of the most important
requirements reveals the gap of security and functionality on
the one hand, as well as privacy, scalability, and robustness
on the other hand. In order to meet all the stated objectives,
distributed networked applications are a promising approach.
Remembering the research on peer-to-peer networks, also
the smart city scenario can benefit from distributed algo-
rithms and the advances in scalability as well as robustness
against network failures and sabotage. As a basic feature,
distributed image processing can provide topological proper-
ties of public transportation networks in realtime. Completely
pseudonymised, and without any intervention of administrative
personnel, the spatio-temporal processes can be analyzed and
evaluated using only localized image processing.

To evaluate the profit for synthesizing applications, a sim-
ulation study was conducted and discussed. Two different
and demonstrative approaches have been presented that can
be built upon distributed topology estimation algorithms, a

basic challenge of research on image processing. In order
to generate realistic simulation topologies, real cities and
their public transportation networks have been extracted and
surveyed, based on OSM data. Afterwards, similar synthetic
topologies were used to serve as input for the demonstrative
applications. On the one hand, only the geographical coordi-
nates were used by the applications. On the other hand, traffic
relationships were estimated by distributed image processing
procedures, at first without timings, and subsequently, with
estimated transition times between pairwise neighbored DSC
nodes in the network. For both networked applications, it
turns out that timed topological knowledge about the public
transportation network can support the introduced and yet
elementary approaches to a high degree. Smart navigation and
route planning is a very complicated feature if it has to be done
in realtime, regarding the actual environmental conditions.
We claim that distributed networked applications have the
potential to support these tasks in an efficient, scalable, and
robust way. Also the mentioned algorithms utilized in the given
applications can be computed in a distributed manner.

However, some issues remain to be addressed in further
research. By using more sophisticated algorithms, the basic
approaches can be extended, e.g., with user-generated infor-
mation via smartphones, or the addition of timetable data and
machine learning strategies. Also, the introduced mechanisms
should be tested under real conditions, but this would require
an extensive pilot project with the support of a city government
and access to the core infrastructure for surveillance tasks –
resources that were not available in this project.
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